These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11531717)

  • 21. Gelatin-tricalcium phosphate membranes immobilized with NGF, BDNF, or IGF-1 for peripheral nerve repair: an in vitro and in vivo study.
    Chen MH; Chen PR; Chen MH; Hsieh ST; Lin FH
    J Biomed Mater Res A; 2006 Dec; 79(4):846-57. PubMed ID: 16886221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of an octacalcium phosphate co-precipitated gelatin composite on the repair of critical-sized rat calvarial defects.
    Handa T; Anada T; Honda Y; Yamazaki H; Kobayashi K; Kanda N; Kamakura S; Echigo S; Suzuki O
    Acta Biomater; 2012 Mar; 8(3):1190-200. PubMed ID: 22198138
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rat bone marrow stromal cells-seeded porous gelatin/tricalcium phosphate/oligomeric proanthocyanidins composite scaffold for bone repair.
    Chen KY; Chung CM; Chen YS; Bau DT; Yao CH
    J Tissue Eng Regen Med; 2013 Sep; 7(9):708-19. PubMed ID: 22392838
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and beta-tricalcium phosphate.
    Takahashi Y; Yamamoto M; Tabata Y
    Biomaterials; 2005 Jun; 26(17):3587-96. PubMed ID: 15621249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and beta-tricalcium phosphate.
    Takahashi Y; Yamamoto M; Tabata Y
    Biomaterials; 2005 Aug; 26(23):4856-65. PubMed ID: 15763265
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect.
    Rojbani H; Nyan M; Ohya K; Kasugai S
    J Biomed Mater Res A; 2011 Sep; 98(4):488-98. PubMed ID: 21681941
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication and evaluation of a new composite composed of tricalcium phosphate, gelatin and chi-li-saan as a bone substitute.
    Yao CH; Tsai CC; Chen YS; Chang CJ; Liu BS; Lin CC; Tsuang YH
    Am J Chin Med; 2002; 30(4):471-82. PubMed ID: 12568275
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Osteoblast-seeded bioglass/gelatin nanocomposite: a promising bone substitute in critical-size calvarial defect repair in rat.
    Johari B; Kadivar M; Lak S; Gholipourmalekabadi M; Urbanska AM; Mozafari M; Ahmadzadehzarajabad M; Azarnezhad A; Afshari S; Zargan J; Kargozar S
    Int J Artif Organs; 2016 Nov; 39(10):524-533. PubMed ID: 27901555
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of the up-front heat treatment of gelatin particles dispersed in calcium phosphate cements on the in vivo material resorption and concomitant bone formation.
    Yamamoto S; Matsushima Y; Kanayama Y; Seki A; Honda H; Unuma H; Sakai Y
    J Mater Sci Mater Med; 2017 Mar; 28(3):48. PubMed ID: 28176192
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bone regenerative properties of injectable PGLA-CaP composite with TGF-beta1 in a rat augmentation model.
    Plachokova A; Link D; van den Dolder J; van den Beucken J; Jansen J
    J Tissue Eng Regen Med; 2007; 1(6):457-64. PubMed ID: 18265419
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In-situ hybridization of calcium silicate and hydroxyapatite-gelatin nanocomposites enhances physical property and in vitro osteogenesis.
    Chiu CK; Lee DJ; Chen H; Chow LC; Ko CC
    J Mater Sci Mater Med; 2015 Feb; 26(2):92. PubMed ID: 25649517
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of a fibrin-fibronectin/beta-tricalcium phosphate/recombinant human bone morphogenetic protein-2 system on bone formation in rat calvarial defects.
    Hong SJ; Kim CS; Han DK; Cho IH; Jung UW; Choi SH; Kim CK; Cho KS
    Biomaterials; 2006 Jul; 27(20):3810-6. PubMed ID: 16574220
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Large-scale bicortical skull bone regeneration using ex vivo replication-defective adenoviral-mediated bone morphogenetic protein-2 gene-transferred bone marrow stromal cells and composite biomaterials.
    Chang SC; Lin TM; Chung HY; Chen PK; Lin FH; Lou J; Jeng LB
    Neurosurgery; 2009 Dec; 65(6 Suppl):75-81; discussion 81-3. PubMed ID: 19935005
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tissue engineered bone formation using chitosan/tricalcium phosphate sponges.
    Lee YM; Park YJ; Lee SJ; Ku Y; Han SB; Choi SM; Klokkevold PR; Chung CP
    J Periodontol; 2000 Mar; 71(3):410-7. PubMed ID: 10776928
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 2. Viability of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate).
    Payne RG; McGonigle JS; Yaszemski MJ; Yasko AW; Mikos AG
    Biomaterials; 2002 Nov; 23(22):4373-80. PubMed ID: 12219827
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 1. Encapsulation of marrow stromal osteoblasts in surface crosslinked gelatin microparticles.
    Payne RG; Yaszemski MJ; Yasko AW; Mikos AG
    Biomaterials; 2002 Nov; 23(22):4359-71. PubMed ID: 12219826
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D-porous β-tricalcium phosphate-alginate-gelatin scaffold with DMOG delivery promotes angiogenesis and bone formation in rat calvarial defects.
    Jahangir S; Hosseini S; Mostafaei F; Sayahpour FA; Baghaban Eslaminejad M
    J Mater Sci Mater Med; 2018 Dec; 30(1):1. PubMed ID: 30564959
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Factors of osteogenesis influencing various human stem cells on third-generation gelatin/β-tricalcium phosphate scaffold material.
    Weinand C; Nabili A; Khumar M; Dunn JR; Ramella-Roman J; Jeng JC; Jordan MH; Tabata Y
    Rejuvenation Res; 2011 Apr; 14(2):185-94. PubMed ID: 21235414
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration.
    Liu H; Yazici H; Ergun C; Webster TJ; Bermek H
    Acta Biomater; 2008 Sep; 4(5):1472-9. PubMed ID: 18394980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.