BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 11532904)

  • 1. O(2) modulates large-conductance Ca(2+)-dependent K(+) channels of rat chemoreceptor cells by a membrane-restricted and CO-sensitive mechanism.
    Riesco-Fagundo AM; Pérez-García MT; González C; López-López JR
    Circ Res; 2001 Aug; 89(5):430-6. PubMed ID: 11532904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MaxiK potassium channels in the function of chemoreceptor cells of the rat carotid body.
    Gomez-Niño A; Obeso A; Baranda JA; Santo-Domingo J; Lopez-Lopez JR; Gonzalez C
    Am J Physiol Cell Physiol; 2009 Sep; 297(3):C715-22. PubMed ID: 19570892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoxia inhibits human recombinant large conductance, Ca(2+)-activated K(+) (maxi-K) channels by a mechanism which is membrane delimited and Ca(2+) sensitive.
    Lewis A; Peers C; Ashford ML; Kemp PJ
    J Physiol; 2002 May; 540(Pt 3):771-80. PubMed ID: 11986367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels.
    Horrigan FT; Aldrich RW
    J Gen Physiol; 2002 Sep; 120(3):267-305. PubMed ID: 12198087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of NS1608 on MaxiK channels in smooth muscle cells from urinary bladder.
    Siemer C; Bushfield M; Newgreen D; Grissmer S
    J Membr Biol; 2000 Jan; 173(1):57-66. PubMed ID: 10612692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen-sensitive reduction in Ca²⁺-activated K⁺ channel open probability in turtle cerebrocortex.
    Rodgers-Garlick CI; Hogg DW; Buck LT
    Neuroscience; 2013 May; 237():243-54. PubMed ID: 23384611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Block of large conductance Ca(2+)-activated K+ channels in rabbit vascular myocytes by internal Mg2+ and Na+.
    Morales E; Cole WC; Remillard CV; Leblane N
    J Physiol; 1996 Sep; 495 ( Pt 3)(Pt 3):701-16. PubMed ID: 8887777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional coupling of the beta(1) subunit to the large conductance Ca(2+)-activated K(+) channel in the absence of Ca(2+). Increased Ca(2+) sensitivity from a Ca(2+)-independent mechanism.
    Nimigean CM; Magleby KL
    J Gen Physiol; 2000 Jun; 115(6):719-36. PubMed ID: 10828246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vinpocetine-induced stimulation of calcium-activated potassium currents in rat pituitary GH3 cells.
    Wu SN; Li HF; Chiang HT
    Biochem Pharmacol; 2001 Apr; 61(7):877-92. PubMed ID: 11274974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two types of voltage-dependent potassium channels in outer hair cells from the guinea pig cochlea.
    van Den Abbeele T; Teulon J; Huy PT
    Am J Physiol; 1999 Nov; 277(5):C913-25. PubMed ID: 10564084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allosteric voltage gating of potassium channels I. Mslo ionic currents in the absence of Ca(2+).
    Horrigan FT; Cui J; Aldrich RW
    J Gen Physiol; 1999 Aug; 114(2):277-304. PubMed ID: 10436003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allosteric voltage gating of potassium channels II. Mslo channel gating charge movement in the absence of Ca(2+).
    Horrigan FT; Aldrich RW
    J Gen Physiol; 1999 Aug; 114(2):305-36. PubMed ID: 10436004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potassium channel types in arterial chemoreceptor cells and their selective modulation by oxygen.
    Ganfornina MD; López-Barneo J
    J Gen Physiol; 1992 Sep; 100(3):401-26. PubMed ID: 1331289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the increase in [Ca(2+)](i) during hypotonic shock and the involvement of Ca(2+)-activated K(+) channels in the regulatory volume decrease in human osteoblast-like cells.
    Weskamp M; Seidl W; Grissmer S
    J Membr Biol; 2000 Nov; 178(1):11-20. PubMed ID: 11058683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local Ca(2+) transients and distribution of BK channels and ryanodine receptors in smooth muscle cells of guinea-pig vas deferens and urinary bladder.
    Ohi Y; Yamamura H; Nagano N; Ohya S; Muraki K; Watanabe M; Imaizumi Y
    J Physiol; 2001 Jul; 534(Pt. 2):313-26. PubMed ID: 11454953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulatory regulation of the large-conductance, calcium-activated potassium channel by G proteins in bovine adrenal chromaffin cells.
    Walsh KB; Wilson SP; Long KJ; Lemon SC
    Mol Pharmacol; 1996 Feb; 49(2):379-86. PubMed ID: 8632773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca(2+)-activated K+ channel inhibition by reactive oxygen species.
    Soto MA; González C; Lissi E; Vergara C; Latorre R
    Am J Physiol Cell Physiol; 2002 Mar; 282(3):C461-71. PubMed ID: 11832330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of beta4 subunit modulation of BK channels.
    Wang B; Rothberg BS; Brenner R
    J Gen Physiol; 2006 Apr; 127(4):449-65. PubMed ID: 16567466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca(2+)-dependent K+ channels of high conductance in smooth muscle cells isolated from rat cerebral arteries.
    Wang Y; Mathers DA
    J Physiol; 1993 Mar; 462():529-45. PubMed ID: 8331591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gating of O2-sensitive K+ channels of arterial chemoreceptor cells and kinetic modifications induced by low PO2.
    Ganfornina MD; López-Barneo J
    J Gen Physiol; 1992 Sep; 100(3):427-55. PubMed ID: 1431804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.