These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
327 related articles for article (PubMed ID: 11532959)
1. A moving DNA replication factory in Caulobacter crescentus. Jensen RB; Wang SC; Shapiro L EMBO J; 2001 Sep; 20(17):4952-63. PubMed ID: 11532959 [TBL] [Abstract][Full Text] [Related]
2. Caulobacter requires a dedicated mechanism to initiate chromosome segregation. Toro E; Hong SH; McAdams HH; Shapiro L Proc Natl Acad Sci U S A; 2008 Oct; 105(40):15435-40. PubMed ID: 18824683 [TBL] [Abstract][Full Text] [Related]
3. A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. Bowman GR; Comolli LR; Zhu J; Eckart M; Koenig M; Downing KH; Moerner WE; Earnest T; Shapiro L Cell; 2008 Sep; 134(6):945-55. PubMed ID: 18805088 [TBL] [Abstract][Full Text] [Related]
4. Coordination between chromosome replication, segregation, and cell division in Caulobacter crescentus. Jensen RB J Bacteriol; 2006 Mar; 188(6):2244-53. PubMed ID: 16513754 [TBL] [Abstract][Full Text] [Related]
8. The Caulobacter crescentus smc gene is required for cell cycle progression and chromosome segregation. Jensen RB; Shapiro L Proc Natl Acad Sci U S A; 1999 Sep; 96(19):10661-6. PubMed ID: 10485882 [TBL] [Abstract][Full Text] [Related]
9. A physical approach to segregation and folding of the Caulobacter crescentus genome. Dame RT; Tark-Dame M; Schiessel H Mol Microbiol; 2011 Dec; 82(6):1311-5. PubMed ID: 22029843 [TBL] [Abstract][Full Text] [Related]
11. The topoisomerase IV ParC subunit colocalizes with the Caulobacter replisome and is required for polar localization of replication origins. Wang SC; Shapiro L Proc Natl Acad Sci U S A; 2004 Jun; 101(25):9251-6. PubMed ID: 15178756 [TBL] [Abstract][Full Text] [Related]
13. CtrA response regulator binding to the Caulobacter chromosome replication origin is required during nutrient and antibiotic stress as well as during cell cycle progression. Bastedo DP; Marczynski GT Mol Microbiol; 2009 Apr; 72(1):139-54. PubMed ID: 19220749 [TBL] [Abstract][Full Text] [Related]
14. Compaction and transport properties of newly replicated Caulobacter crescentus DNA. Hong SH; McAdams HH Mol Microbiol; 2011 Dec; 82(6):1349-58. PubMed ID: 22085253 [TBL] [Abstract][Full Text] [Related]
15. Cell-cycle-regulated expression and subcellular localization of the Caulobacter crescentus SMC chromosome structural protein. Jensen RB; Shapiro L J Bacteriol; 2003 May; 185(10):3068-75. PubMed ID: 12730166 [TBL] [Abstract][Full Text] [Related]
16. Oscillating global regulators control the genetic circuit driving a bacterial cell cycle. Holtzendorff J; Hung D; Brende P; Reisenauer A; Viollier PH; McAdams HH; Shapiro L Science; 2004 May; 304(5673):983-7. PubMed ID: 15087506 [TBL] [Abstract][Full Text] [Related]
17. A self-associating protein critical for chromosome attachment, division, and polar organization in caulobacter. Ebersbach G; Briegel A; Jensen GJ; Jacobs-Wagner C Cell; 2008 Sep; 134(6):956-68. PubMed ID: 18805089 [TBL] [Abstract][Full Text] [Related]
18. Control of chromosome replication in caulobacter crescentus. Marczynski GT; Shapiro L Annu Rev Microbiol; 2002; 56():625-56. PubMed ID: 12142494 [TBL] [Abstract][Full Text] [Related]
19. Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus. Mohl DA; Gober JW Cell; 1997 Mar; 88(5):675-84. PubMed ID: 9054507 [TBL] [Abstract][Full Text] [Related]
20. Movement of replicating DNA through a stationary replisome. Lemon KP; Grossman AD Mol Cell; 2000 Dec; 6(6):1321-30. PubMed ID: 11163206 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]