These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
490 related articles for article (PubMed ID: 11532960)
1. Structure of the ABC ATPase domain of human TAP1, the transporter associated with antigen processing. Gaudet R; Wiley DC EMBO J; 2001 Sep; 20(17):4964-72. PubMed ID: 11532960 [TBL] [Abstract][Full Text] [Related]
2. The distinct nucleotide binding states of the transporter associated with antigen processing (TAP) are regulated by the nonhomologous C-terminal tails of TAP1 and TAP2. Bouabe H; Knittler MR Eur J Biochem; 2003 Nov; 270(22):4531-46. PubMed ID: 14622282 [TBL] [Abstract][Full Text] [Related]
3. Analyses of conformational states of the transporter associated with antigen processing (TAP) protein in a native cellular membrane environment. Geng J; Sivaramakrishnan S; Raghavan M J Biol Chem; 2013 Dec; 288(52):37039-47. PubMed ID: 24196954 [TBL] [Abstract][Full Text] [Related]
4. A half-type ABC transporter TAPL is highly conserved between rodent and man, and the human gene is not responsive to interferon-gamma in contrast to TAP1 and TAP2. Kobayashi A; Kasano M; Maeda T; Hori S; Motojima K; Suzuki M; Fujiwara T; Takahashi E; Yabe T; Tanaka K; Kasahara M; Yamaguchi Y; Maeda M J Biochem; 2000 Oct; 128(4):711-8. PubMed ID: 11011155 [TBL] [Abstract][Full Text] [Related]
5. Catalytic site modifications of TAP1 and TAP2 and their functional consequences. Perria CL; Rajamanickam V; Lapinski PE; Raghavan M J Biol Chem; 2006 Dec; 281(52):39839-51. PubMed ID: 17068338 [TBL] [Abstract][Full Text] [Related]
6. Crystal structures of the ATPase subunit of the glucose ABC transporter from Sulfolobus solfataricus: nucleotide-free and nucleotide-bound conformations. Verdon G; Albers SV; Dijkstra BW; Driessen AJ; Thunnissen AM J Mol Biol; 2003 Jul; 330(2):343-58. PubMed ID: 12823973 [TBL] [Abstract][Full Text] [Related]
7. Head-head/tail-tail relative orientation of the pore-forming domains of the heterodimeric ABC transporter TAP. Vos JC; Reits EA; Wojcik-Jacobs E; Neefjes J Curr Biol; 2000 Jan; 10(1):1-7. PubMed ID: 10660295 [TBL] [Abstract][Full Text] [Related]
8. Engineering ATPase activity in the isolated ABC cassette of human TAP1. Ernst R; Koch J; Horn C; Tampé R; Schmitt L J Biol Chem; 2006 Sep; 281(37):27471-80. PubMed ID: 16864587 [TBL] [Abstract][Full Text] [Related]
9. Purification, crystallization and preliminary X-ray crystallographic analysis of the ATPase domain of human TAP in nucleotide-free and ADP-, vanadate- and azide-complexed forms. Meena SR; Gangwar SP; Saxena AK Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Jun; 68(Pt 6):655-8. PubMed ID: 22684063 [TBL] [Abstract][Full Text] [Related]
10. Tapasin interacts with the membrane-spanning domains of both TAP subunits and enhances the structural stability of TAP1 x TAP2 Complexes. Raghuraman G; Lapinski PE; Raghavan M J Biol Chem; 2002 Nov; 277(44):41786-94. PubMed ID: 12213826 [TBL] [Abstract][Full Text] [Related]
11. An ABC transporter homologous to TAP proteins. Yamaguchi Y; Kasano M; Terada T; Sato R; Maeda M FEBS Lett; 1999 Aug; 457(2):231-6. PubMed ID: 10471785 [TBL] [Abstract][Full Text] [Related]
12. Distinct functions and cooperative interaction of the subunits of the transporter associated with antigen processing (TAP). Karttunen JT; Lehner PJ; Gupta SS; Hewitt EW; Cresswell P Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7431-6. PubMed ID: 11381133 [TBL] [Abstract][Full Text] [Related]
13. Functional asymmetry of the ATP-binding-cassettes of the ABC transporter TAP is determined by intrinsic properties of the nucleotide binding domains. Daumke O; Knittler MR Eur J Biochem; 2001 Sep; 268(17):4776-86. PubMed ID: 11532014 [TBL] [Abstract][Full Text] [Related]
14. Functional cysteine-less subunits of the transporter associated with antigen processing (TAP1 and TAP2) by de novo gene assembly. Heintke S; Chen M; Ritz U; Lankat-Buttgereit B; Koch J; Abele R; Seliger B; Tampé R FEBS Lett; 2003 Jan; 533(1-3):42-6. PubMed ID: 12505156 [TBL] [Abstract][Full Text] [Related]
15. Functional non-equivalence of ATP-binding cassette signature motifs in the transporter associated with antigen processing (TAP). Chen M; Abele R; Tampé R J Biol Chem; 2004 Oct; 279(44):46073-81. PubMed ID: 15322097 [TBL] [Abstract][Full Text] [Related]
16. Distinct functional properties of the TAP subunits coordinate the nucleotide-dependent transport cycle. Alberts P; Daumke O; Deverson EV; Howard JC; Knittler MR Curr Biol; 2001 Feb; 11(4):242-51. PubMed ID: 11250152 [TBL] [Abstract][Full Text] [Related]
17. Interactions formed by individually expressed TAP1 and TAP2 polypeptide subunits. Antoniou AN; Ford S; Pilley ES; Blake N; Powis SJ Immunology; 2002 Jun; 106(2):182-9. PubMed ID: 12047747 [TBL] [Abstract][Full Text] [Related]
18. Nucleotide binding to the hydrophilic C-terminal domain of the transporter associated with antigen processing (TAP). Müller KM; Ebensperger C; Tampé R J Biol Chem; 1994 May; 269(19):14032-7. PubMed ID: 8188683 [TBL] [Abstract][Full Text] [Related]
19. Distinct structural and functional properties of the ATPase sites in an asymmetric ABC transporter. Procko E; Ferrin-O'Connell I; Ng SL; Gaudet R Mol Cell; 2006 Oct; 24(1):51-62. PubMed ID: 17018292 [TBL] [Abstract][Full Text] [Related]
20. Crystal structures of the MJ1267 ATP binding cassette reveal an induced-fit effect at the ATPase active site of an ABC transporter. Karpowich N; Martsinkevich O; Millen L; Yuan YR; Dai PL; MacVey K; Thomas PJ; Hunt JF Structure; 2001 Jul; 9(7):571-86. PubMed ID: 11470432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]