These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 11533065)

  • 41. The N-terminal region of the ϵ subunit from cyanobacterial ATP synthase alone can inhibit ATPase activity.
    Inabe K; Kondo K; Yoshida K; Wakabayashi KI; Hisabori T
    J Biol Chem; 2019 Jun; 294(26):10094-10103. PubMed ID: 31068416
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Topological and functional relationship of subunits F1-gamma and F0I-PVP(b) in the mitochondrial H+-ATP synthase.
    Gaballo A; Zanotti F; Solimeo A; Papa S
    Biochemistry; 1998 Dec; 37(50):17519-26. PubMed ID: 9860867
    [TBL] [Abstract][Full Text] [Related]  

  • 43. ATP synthases in the year 2000: defining the different levels of mechanism and getting a grip on each.
    Pedersen PL; Ko YH; Hong S
    J Bioenerg Biomembr; 2000 Oct; 32(5):423-32. PubMed ID: 15254377
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stiffness of γ subunit of F(1)-ATPase.
    Okuno D; Iino R; Noji H
    Eur Biophys J; 2010 Nov; 39(12):1589-96. PubMed ID: 20549499
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mutations on the N-terminal edge of the DELSEED loop in either the α or β subunit of the mitochondrial F1-ATPase enhance ATP hydrolysis in the absence of the central γ rotor.
    La T; Clark-Walker GD; Wang X; Wilkens S; Chen XJ
    Eukaryot Cell; 2013 Nov; 12(11):1451-61. PubMed ID: 24014764
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Torque generation and utilization in motor enzyme F0F1-ATP synthase: half-torque F1 with short-sized pushrod helix and reduced ATP Synthesis by half-torque F0F1.
    Usukura E; Suzuki T; Furuike S; Soga N; Saita E; Hisabori T; Kinosita K; Yoshida M
    J Biol Chem; 2012 Jan; 287(3):1884-91. PubMed ID: 22128167
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The mechanism of rotating proton pumping ATPases.
    Nakanishi-Matsui M; Sekiya M; Nakamoto RK; Futai M
    Biochim Biophys Acta; 2010 Aug; 1797(8):1343-52. PubMed ID: 20170625
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The NMR solution structure of Mycobacterium tuberculosis F-ATP synthase subunit ε provides new insight into energy coupling inside the rotary engine.
    Joon S; Ragunathan P; Sundararaman L; Nartey W; Kundu S; Manimekalai MSS; Bogdanović N; Dick T; Grüber G
    FEBS J; 2018 Mar; 285(6):1111-1128. PubMed ID: 29360236
    [TBL] [Abstract][Full Text] [Related]  

  • 49. ATP-driven rotation of the gamma subunit in F(1)-ATPase.
    Weber J; Nadanaciva S; Senior AE
    FEBS Lett; 2000 Oct; 483(1):1-5. PubMed ID: 11033345
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Viscoelastic dynamics of actin filaments coupled to rotary F-ATPase: curvature as an indicator of the torque.
    Cherepanov DA; Junge W
    Biophys J; 2001 Sep; 81(3):1234-44. PubMed ID: 11509340
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Functional halt positions of rotary FOF1-ATPase correlated with crystal structures.
    Sielaff H; Rennekamp H; Engelbrecht S; Junge W
    Biophys J; 2008 Nov; 95(10):4979-87. PubMed ID: 18723591
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cross-linking of engineered subunit delta to (alphabeta)3 in chloroplast F-ATPase.
    Lill H; Hensel F; Junge W; Engelbrecht S
    J Biol Chem; 1996 Dec; 271(51):32737-42. PubMed ID: 8955107
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The molecular neighborhood of subunit 8 of yeast mitochondrial F1F0-ATP synthase probed by cysteine scanning mutagenesis and chemical modification.
    Stephens AN; Khan MA; Roucou X; Nagley P; Devenish RJ
    J Biol Chem; 2003 May; 278(20):17867-75. PubMed ID: 12626501
    [TBL] [Abstract][Full Text] [Related]  

  • 54. ATP synthase with its gamma subunit reduced to the N-terminal helix can still catalyze ATP synthesis.
    Mnatsakanyan N; Hook JA; Quisenberry L; Weber J
    J Biol Chem; 2009 Sep; 284(39):26519-25. PubMed ID: 19636076
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Subunit organization of the stator part of the F0 complex from Escherichia coli ATP synthase.
    Greie JC; Deckers-Hebestreit G; Altendorf K
    J Bioenerg Biomembr; 2000 Aug; 32(4):357-64. PubMed ID: 11768297
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Activation and stiffness of the inhibited states of F1-ATPase probed by single-molecule manipulation.
    Saita E; Iino R; Suzuki T; Feniouk BA; Kinosita K; Yoshida M
    J Biol Chem; 2010 Apr; 285(15):11411-7. PubMed ID: 20154086
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rotating proton pumping ATPases: subunit/subunit interactions and thermodynamics.
    Nakanishi-Matsui M; Sekiya M; Futai M
    IUBMB Life; 2013 Mar; 65(3):247-54. PubMed ID: 23441040
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase.
    Allegretti M; Klusch N; Mills DJ; Vonck J; Kühlbrandt W; Davies KM
    Nature; 2015 May; 521(7551):237-40. PubMed ID: 25707805
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Redox regulation of CF1-ATPase involves interplay between the γ-subunit neck region and the turn region of the βDELSEED-loop.
    Buchert F; Konno H; Hisabori T
    Biochim Biophys Acta; 2015; 1847(4-5):441-450. PubMed ID: 25660164
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neither helix in the coiled coil region of the axle of F1-ATPase plays a significant role in torque production.
    Hossain MD; Furuike S; Maki Y; Adachi K; Suzuki T; Kohori A; Itoh H; Yoshida M; Kinosita K
    Biophys J; 2008 Nov; 95(10):4837-44. PubMed ID: 18708468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.