These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 11533118)
21. A polar system of intercontinental bird migration. Alerstam T; Bäckman J; Gudmundsson GA; Hedenström A; Henningsson SS; Karlsson H; Rosén M; Strandberg R Proc Biol Sci; 2007 Oct; 274(1625):2523-30. PubMed ID: 17686732 [TBL] [Abstract][Full Text] [Related]
22. Phenological trends in the pre- and post-breeding migration of long-distance migratory birds. Lawrence KB; Barlow CR; Bensusan K; Perez C; Willis SG Glob Chang Biol; 2022 Jan; 28(2):375-389. PubMed ID: 34606660 [TBL] [Abstract][Full Text] [Related]
23. Energy metabolism during endurance flight and the post-flight recovery phase. Jenni-Eiermann S J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Jul; 203(6-7):431-438. PubMed ID: 28224277 [TBL] [Abstract][Full Text] [Related]
24. Corticosterone and growth hormone levels in shorebirds during spring and fall migration stopover. Tsipoura N; Scanes CG; Burger J J Exp Zool; 1999 Nov; 284(6):645-51. PubMed ID: 10531551 [TBL] [Abstract][Full Text] [Related]
25. Migrating songbirds on stopover prepare for, and recover from, oxidative challenges posed by long-distance flight. Skrip MM; Bauchinger U; Goymann W; Fusani L; Cardinale M; Alan RR; McWilliams SR Ecol Evol; 2015 Aug; 5(15):3198-209. PubMed ID: 26355277 [TBL] [Abstract][Full Text] [Related]
26. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Both C; Visser ME Nature; 2001 May; 411(6835):296-8. PubMed ID: 11357129 [TBL] [Abstract][Full Text] [Related]
27. Flight muscle protein damage during endurance flight is related to energy expenditure but not dietary polyunsaturated fatty acids in a migratory bird. Dick MF; Guglielmo CG J Exp Biol; 2019 Mar; 222(Pt 5):. PubMed ID: 30824569 [TBL] [Abstract][Full Text] [Related]
28. Long-distance migratory shorebirds travel faster towards their breeding grounds, but fly faster post-breeding. Duijns S; Anderson AM; Aubry Y; Dey A; Flemming SA; Francis CM; Friis C; Gratto-Trevor C; Hamilton DJ; Holberton R; Koch S; McKellar AE; Mizrahi D; Morrissey CA; Neima SG; Newstead D; Niles L; Nol E; Paquet J; Rausch J; Tudor L; Turcotte Y; Smith PA Sci Rep; 2019 Jul; 9(1):9420. PubMed ID: 31263125 [TBL] [Abstract][Full Text] [Related]
29. Interannual differences in the relative timing of southward migration of male and female western sandpipers (Calidris mauri). Ydenberg RC; Niehaus AC; Lank DB Naturwissenschaften; 2005 Jul; 92(7):332-5. PubMed ID: 15905977 [TBL] [Abstract][Full Text] [Related]
30. Migration routes and strategies in a highly aerial migrant, the common swift Apus apus, revealed by light-level geolocators. Åkesson S; Klaassen R; Holmgren J; Fox JW; Hedenström A PLoS One; 2012; 7(7):e41195. PubMed ID: 22815968 [TBL] [Abstract][Full Text] [Related]
31. No evidence for an association between Clock gene allelic variation and migration timing in a long-distance migratory shorebird (Limosa lapponica baueri). Parody-Merino ÁM; Battley PF; Conklin JR; Fidler AE Oecologia; 2019 Dec; 191(4):843-859. PubMed ID: 31659437 [TBL] [Abstract][Full Text] [Related]
32. Are birds stressed during long-term flights? A wind-tunnel study on circulating corticosterone in the red knot. Jenni-Eiermann S; Hasselquist D; Lindström A; Koolhaas A; Piersma T Gen Comp Endocrinol; 2009; 164(2-3):101-6. PubMed ID: 19481083 [TBL] [Abstract][Full Text] [Related]
33. Where in the air? Aerial habitat use of nocturnally migrating birds. Horton KG; Van Doren BM; Stepanian PM; Farnsworth A; Kelly JF Biol Lett; 2016 Nov; 12(11):. PubMed ID: 27881761 [TBL] [Abstract][Full Text] [Related]
34. Migratory patterns and settlement areas revealed by remote sensing in an endangered intra-African migrant, the Black Harrier (Circus maurus). Garcia-Heras MS; Arroyo B; Mougeot F; Bildstein K; Therrien JF; Simmons RE PLoS One; 2019; 14(1):e0210756. PubMed ID: 30653592 [TBL] [Abstract][Full Text] [Related]
35. Stop early to travel fast: modelling risk-averse scheduling among nocturnally migrating birds. McLaren JD; Shamoun-Baranes J; Bouten W J Theor Biol; 2013 Jan; 316():90-8. PubMed ID: 23026762 [TBL] [Abstract][Full Text] [Related]
36. The response of migratory populations to phenological change: a Migratory Flow Network modelling approach. Taylor CM; Laughlin AJ; Hall RJ J Anim Ecol; 2016 May; 85(3):648-59. PubMed ID: 26782029 [TBL] [Abstract][Full Text] [Related]
37. Barriers and distances as determinants for the evolution of bird migration links: the arctic shorebird system. Henningsson SS; Alerstam T Proc Biol Sci; 2005 Nov; 272(1578):2251-8. PubMed ID: 16191637 [TBL] [Abstract][Full Text] [Related]
38. Oxidative stress in endurance flight: an unconsidered factor in bird migration. Jenni-Eiermann S; Jenni L; Smith S; Costantini D PLoS One; 2014; 9(5):e97650. PubMed ID: 24830743 [TBL] [Abstract][Full Text] [Related]
39. Trans-equatorial migration routes, staging sites and wintering areas of a high-Arctic avian predator: the long-tailed Skua (Stercorarius longicaudus). Gilg O; Moe B; Hanssen SA; Schmidt NM; Sittler B; Hansen J; Reneerkens J; Sabard B; Chastel O; Moreau J; Phillips RA; Oudman T; Biersma EM; Fenstad AA; Lang J; Bollache L PLoS One; 2013; 8(5):e64614. PubMed ID: 23705000 [TBL] [Abstract][Full Text] [Related]
40. The relationship of plasma indicators of lipid metabolism and muscle damage to overnight temperature in winter-acclimatized small birds. Swanson DL; Thomas NE Comp Biochem Physiol A Mol Integr Physiol; 2007 Jan; 146(1):87-94. PubMed ID: 17049895 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]