BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11533149)

  • 1. Cardiac performance in inbred rat genetic models of low and high running capacity.
    Chen J; Feller GM; Barbato JC; Periyasamy S; Xie ZJ; Koch LG; Shapiro JI; Britton SL
    J Physiol; 2001 Sep; 535(Pt 2):611-7. PubMed ID: 11533149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the sarcoplasmic reticulum in contraction and relaxation of immature rabbit ventricular myocytes.
    Balaguru D; Haddock PS; Puglisi JL; Bers DM; Coetzee WA; Artman M
    J Mol Cell Cardiol; 1997 Oct; 29(10):2747-57. PubMed ID: 9344769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular mechanisms for the slow phase of the Frank-Starling response.
    Bluhm WF; Sung D; Lew WY; Garfinkel A; McCulloch AD
    J Electrocardiol; 1998; 31 Suppl():13-22. PubMed ID: 9988000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional effects of low-intensity endurance training on structural and mechanical properties of rat ventricular myocytes.
    Carneiro-Júnior MA; Prímola-Gomes TN; Quintão-Júnior JF; Drummond LR; Lavorato VN; Drummond FR; Felix LB; Oliveira EM; Cruz JS; Natali AJ; Mill JG
    J Appl Physiol (1985); 2013 Jul; 115(1):107-15. PubMed ID: 23640594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypokalaemia induces Ca²⁺ overload and Ca²⁺ waves in ventricular myocytes by reducing Na⁺,K⁺-ATPase α₂ activity.
    Aronsen JM; Skogestad J; Lewalle A; Louch WE; Hougen K; Stokke MK; Swift F; Niederer S; Smith NP; Sejersted OM; Sjaastad I
    J Physiol; 2015 Mar; 593(6):1509-21. PubMed ID: 25772299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotypic differences in cardiovascular regulation in inbred rat models of aerobic capacity.
    Koch LG; Britton SL; Barbato JC; Rodenbaugh DW; DiCarlo SE
    Physiol Genomics; 1999 Aug; 1(2):63-9. PubMed ID: 11015562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid inhibition of the Na+-K+ pump affects Na+-Ca2+ exchanger-mediated relaxation in rabbit ventricular myocytes.
    Terracciano CM
    J Physiol; 2001 May; 533(Pt 1):165-73. PubMed ID: 11351025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac adenosine production in rat genetic models of low and high exercise capacity.
    Walker JP; Barbato JC; Koch LG
    Am J Physiol Regul Integr Comp Physiol; 2002 Jul; 283(1):R168-73. PubMed ID: 12069942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiac excitation-contraction coupling in the portal hypertensive rat.
    Zavecz JH; Bueno O; Maloney RE; O'Donnell JM; Roerig SC; Battarbee HD
    Am J Physiol Gastrointest Liver Physiol; 2000 Jul; 279(1):G28-39. PubMed ID: 10898744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age and gender differences in excitation-contraction coupling of the rat ventricle.
    Leblanc N; Chartier D; Gosselin H; Rouleau JL
    J Physiol; 1998 Sep; 511 ( Pt 2)(Pt 2):533-48. PubMed ID: 9706029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms.
    Bassani JW; Bassani RA; Bers DM
    J Physiol; 1994 Apr; 476(2):279-93. PubMed ID: 8046643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide synthase type-1 modulates cardiomyocyte contractility and calcium handling: association with low intrinsic aerobic capacity.
    Høydal MA; Wisløff U; Kemi OJ; Britton SL; Koch LG; Smith GL; Ellingsen Ø
    Eur J Cardiovasc Prev Rehabil; 2007 Apr; 14(2):319-25. PubMed ID: 17446814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ouabain-induced hypertension enhances left ventricular contractility in rats.
    Rossoni LV; Xavier FE; Moreira CM; Falcochio D; Amanso AM; Tanoue CU; Carvalho CR; Vassallo DV
    Life Sci; 2006 Sep; 79(16):1537-45. PubMed ID: 16716361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism underlying the cardiotoxic effect of the toxin from the jellyfish Chironex fleckeri.
    Mustafa MR; White E; Hongo K; Othman I; Orchard CH
    Toxicol Appl Pharmacol; 1995 Aug; 133(2):196-206. PubMed ID: 7645014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of prenatal alcohol exposure on myocardial contractile function in adult rat hearts: role of intracellular calcium and apoptosis.
    Ren J; Wold LE; Natavio M; Ren BH; Hannigan JH; Brown RA
    Alcohol Alcohol; 2002; 37(1):30-7. PubMed ID: 11825854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force-frequency relationship in intact mammalian ventricular myocardium: physiological and pathophysiological relevance.
    Endoh M
    Eur J Pharmacol; 2004 Oct; 500(1-3):73-86. PubMed ID: 15464022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca flux, contractility, and excitation-contraction coupling in hypertrophic rat ventricular myocytes.
    McCall E; Ginsburg KS; Bassani RA; Shannon TR; Qi M; Samarel AM; Bers DM
    Am J Physiol; 1998 Apr; 274(4):H1348-60. PubMed ID: 9575940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca influx and sarcoplasmic reticulum Ca release in cardiac muscle activation during postrest recovery.
    Bers DM
    Am J Physiol; 1985 Mar; 248(3 Pt 2):H366-81. PubMed ID: 2579587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in extracellular K+ concentration modulate contractility of rat and rabbit cardiac myocytes via the inward rectifier K+ current IK1.
    Bouchard R; Clark RB; Juhasz AE; Giles WR
    J Physiol; 2004 May; 556(Pt 3):773-90. PubMed ID: 14990678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relaxation in ferret ventricular myocytes: unusual interplay among calcium transport systems.
    Bassani RA; Bassani JW; Bers DM
    J Physiol; 1994 Apr; 476(2):295-308. PubMed ID: 8046644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.