These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 11533214)
1. Characterization of a porcine lung epithelial cell line suitable for influenza virus studies. Seo SH; Goloubeva O; Webby R; Webster RG J Virol; 2001 Oct; 75(19):9517-25. PubMed ID: 11533214 [TBL] [Abstract][Full Text] [Related]
2. Infection of differentiated porcine airway epithelial cells by influenza virus: differential susceptibility to infection by porcine and avian viruses. Punyadarsaniya D; Liang CH; Winter C; Petersen H; Rautenschlein S; Hennig-Pauka I; Schwegmann-Wessels C; Wu CY; Wong CH; Herrler G PLoS One; 2011; 6(12):e28429. PubMed ID: 22174804 [TBL] [Abstract][Full Text] [Related]
3. Development and characterization of swine primary respiratory epithelial cells and their susceptibility to infection by four influenza virus types. Sreenivasan CC; Thomas M; Antony L; Wormstadt T; Hildreth MB; Wang D; Hause B; Francis DH; Li F; Kaushik RS Virology; 2019 Feb; 528():152-163. PubMed ID: 30616205 [TBL] [Abstract][Full Text] [Related]
4. Characterization of a porcine intestinal epithelial cell line for influenza virus production. Sun Z; Huber VC; McCormick K; Kaushik RS; Boon ACM; Zhu L; Hause B; Webby RJ; Fang Y J Gen Virol; 2012 Sep; 93(Pt 9):2008-2016. PubMed ID: 22739061 [TBL] [Abstract][Full Text] [Related]
5. Comparison of mono- and co-infection by swine influenza A viruses and porcine respiratory coronavirus in porcine precision-cut lung slices. Krimmling T; Schwegmann-Weßels C Res Vet Sci; 2017 Dec; 115():470-477. PubMed ID: 28779714 [TBL] [Abstract][Full Text] [Related]
6. In vitro characterization of influenza A virus attachment in the upper and lower respiratory tracts of pigs. Detmer SE; Gramer MR; Goyal SM; Torremorell M Vet Pathol; 2013 Jul; 50(4):648-58. PubMed ID: 23169913 [TBL] [Abstract][Full Text] [Related]
7. Comparison of Porcine Airway and Intestinal Epithelial Cell Lines for the Susceptibility and Expression of Pattern Recognition Receptors upon Influenza Virus Infection. Thomas M; Pierson M; Uprety T; Zhu L; Ran Z; Sreenivasan CC; Wang D; Hause B; Francis DH; Li F; Kaushik RS Viruses; 2018 Jun; 10(6):. PubMed ID: 29880757 [TBL] [Abstract][Full Text] [Related]
8. Investigation of the species origin of the St. Jude Porcine Lung epithelial cell line (SJPL) made available to researchers. Silversides DW; Music N; Jacques M; Gagnon CA; Webby R J Virol; 2010 May; 84(10):5454-5. PubMed ID: 20200241 [No Abstract] [Full Text] [Related]
10. Dynamic Virus-Bacterium Interactions in a Porcine Precision-Cut Lung Slice Coinfection Model: Swine Influenza Virus Paves the Way for Streptococcus suis Infection in a Two-Step Process. Meng F; Wu NH; Nerlich A; Herrler G; Valentin-Weigand P; Seitz M Infect Immun; 2015 Jul; 83(7):2806-15. PubMed ID: 25916988 [TBL] [Abstract][Full Text] [Related]
11. Influenza A virus infections in swine: pathogenesis and diagnosis. Janke BH Vet Pathol; 2014 Mar; 51(2):410-26. PubMed ID: 24363301 [TBL] [Abstract][Full Text] [Related]
12. Actinobacillus pleuropneumoniae induces SJPL cell cycle arrest in G2/M-phase and inhibits porcine reproductive and respiratory syndrome virus replication. Ferreira Barbosa JA; Labrie J; Beaudry F; Gagnon CA; Jacques M Virol J; 2015 Nov; 12():188. PubMed ID: 26577697 [TBL] [Abstract][Full Text] [Related]
13. Low-dose interferon Type I treatment is effective against H5N1 and swine-origin H1N1 influenza A viruses in vitro and in vivo. Haasbach E; Droebner K; Vogel AB; Planz O J Interferon Cytokine Res; 2011 Jun; 31(6):515-25. PubMed ID: 21323570 [TBL] [Abstract][Full Text] [Related]
14. Avian influenza virus isolates from wild birds replicate and cause disease in a mouse model of infection. Driskell EA; Jones CA; Stallknecht DE; Howerth EW; Tompkins SM Virology; 2010 Apr; 399(2):280-9. PubMed ID: 20123144 [TBL] [Abstract][Full Text] [Related]
15. Altered pathogenicity for seasonal influenza virus by single reassortment of the RNP genes derived from the 2009 pandemic influenza virus. Hsieh EF; Lin SJ; Mok CK; Chen GW; Huang CH; Wang YC; Chen TC; Chen CJ; Ojcius DM; Shih SR J Infect Dis; 2011 Sep; 204(6):864-72. PubMed ID: 21849283 [TBL] [Abstract][Full Text] [Related]
16. A single point mutation (Y89F) within the non-structural protein 1 of influenza A viruses limits epithelial cell tropism and virulence in mice. Hrincius ER; Hennecke AK; Gensler L; Nordhoff C; Anhlan D; Vogel P; McCullers JA; Ludwig S; Ehrhardt C Am J Pathol; 2012 Jun; 180(6):2361-74. PubMed ID: 22525464 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of hemagglutinin subtype 1 swine influenza viruses from the United States. Vincent AL; Lager KM; Ma W; Lekcharoensuk P; Gramer MR; Loiacono C; Richt JA Vet Microbiol; 2006 Dec; 118(3-4):212-22. PubMed ID: 16962262 [TBL] [Abstract][Full Text] [Related]
18. Hemagglutinin mutation D222N of the 2009 pandemic H1N1 influenza virus alters receptor specificity without affecting virulence in mice. Kong W; Liu L; Wang Y; Gao H; Wei K; Sun H; Sun Y; Liu J; Ma G; Pu J Virus Res; 2014 Aug; 189():79-86. PubMed ID: 24818619 [TBL] [Abstract][Full Text] [Related]
19. Human intestinal epithelial cells are susceptible to influenza virus subtype H9N2. Qu B; Li X; Gao W; Sun W; Jin Y; Cardona CJ; Xing Z Virus Res; 2012 Jan; 163(1):151-9. PubMed ID: 21986059 [TBL] [Abstract][Full Text] [Related]
20. A chicken influenza virus recognizes fucosylated α2,3 sialoglycan receptors on the epithelial cells lining upper respiratory tracts of chickens. Hiono T; Okamatsu M; Nishihara S; Takase-Yoden S; Sakoda Y; Kida H Virology; 2014 May; 456-457():131-8. PubMed ID: 24889232 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]