These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 11535092)

  • 21. Surface ligand dynamics in growth of nanocrystals.
    Pradhan N; Reifsnyder D; Xie R; Aldana J; Peng X
    J Am Chem Soc; 2007 Aug; 129(30):9500-9. PubMed ID: 17622147
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Water molecules bonded to the carboxylate groups at the inorganic-organic interface of an inorganic nanocrystal coated with alkanoate ligands.
    Li J; Cao W; Shu Y; Zhang H; Qian X; Kong X; Wang L; Peng X
    Natl Sci Rev; 2022 Feb; 9(2):nwab138. PubMed ID: 35233287
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the size-dependent behavior of nanocrystal-ligand bonds.
    Schrier J; Wang LW
    J Phys Chem B; 2006 Jun; 110(24):11982-5. PubMed ID: 16800505
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Architecture of stable and water-soluble CdSe/ZnS core-shell dendron nanocrystals via ligand exchange.
    Zhao Y; Li Y; Song Y; Jiang W; Wu Z; Wang YA; Sun J; Wang J
    J Colloid Interface Sci; 2009 Nov; 339(2):336-43. PubMed ID: 19735920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An efficient photocatalyst structure: TiO(2)(B) nanofibers with a shell of anatase nanocrystals.
    Yang D; Liu H; Zheng Z; Yuan Y; Zhao JC; Waclawik ER; Ke X; Zhu H
    J Am Chem Soc; 2009 Dec; 131(49):17885-93. PubMed ID: 19911792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solvent-like ligand-coated ultrasmall cadmium selenide nanocrystals: strong electronic coupling in a self-organized assembly.
    Lawrence KN; Johnson MA; Dolai S; Kumbhar A; Sardar R
    Nanoscale; 2015 Jul; 7(27):11667-77. PubMed ID: 26098759
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The important role of surface ligand on CdSe/CdS core/shell nanocrystals in affecting the efficiency of H₂ photogeneration from water.
    Wang P; Zhang J; He H; Xu X; Jin Y
    Nanoscale; 2015 Mar; 7(13):5767-75. PubMed ID: 25757912
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of different gold nanocrystal core-resin shell structures through the control of the core assembly and shell polymerization.
    Sun Z; Bao Z; Fang C; Wang J
    Langmuir; 2012 Jun; 28(24):9082-92. PubMed ID: 22432549
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous interfacial and precipitated supracrystals of Au nanocrystals: experiments and simulations.
    Goubet N; Richardi J; Albouy PA; Pileni MP
    J Phys Chem B; 2013 Apr; 117(16):4510-6. PubMed ID: 23083458
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach.
    Wang M; Zhang M; Qian J; Zhao F; Shen L; Scholes GD; Winnik MA
    Langmuir; 2009 Oct; 25(19):11732-40. PubMed ID: 19788225
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reaction chemistry and ligand exchange at cadmium-selenide nanocrystal surfaces.
    Owen JS; Park J; Trudeau PE; Alivisatos AP
    J Am Chem Soc; 2008 Sep; 130(37):12279-81. PubMed ID: 18722426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermally degradable ligands for nanocrystals.
    Wills AW; Kang MS; Khare A; Gladfelter WL; Norris DJ
    ACS Nano; 2010 Aug; 4(8):4523-30. PubMed ID: 20731435
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Entropic Ligands for Nanocrystals: From Unexpected Solution Properties to Outstanding Processability.
    Yang Y; Qin H; Jiang M; Lin L; Fu T; Dai X; Zhang Z; Niu Y; Cao H; Jin Y; Zhao F; Peng X
    Nano Lett; 2016 Apr; 16(4):2133-8. PubMed ID: 26923682
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Partitioning surface ligands on nanocrystals for maximal solubility.
    Pang Z; Zhang J; Cao W; Kong X; Peng X
    Nat Commun; 2019 Jun; 10(1):2454. PubMed ID: 31165734
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chelating ligands for nanocrystals' surface functionalization.
    Querner C; Reiss P; Bleuse J; Pron A
    J Am Chem Soc; 2004 Sep; 126(37):11574-82. PubMed ID: 15366904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The birth of a type-II nanostructure: carrier localization and optical properties of isoelectronically doped CdSe:Te nanocrystals.
    Zhang L; Lin Z; Luo JW; Franceschetti A
    ACS Nano; 2012 Sep; 6(9):8325-34. PubMed ID: 22900638
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal structure control of CdSe nanocrystals in growth and nucleation: dominating effects of surface versus interior structure.
    Gao Y; Peng X
    J Am Chem Soc; 2014 May; 136(18):6724-32. PubMed ID: 24712700
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Purification technologies for colloidal nanocrystals.
    Shen Y; Gee MY; Greytak AB
    Chem Commun (Camb); 2017 Jan; 53(5):827-841. PubMed ID: 27942615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface states in the photoionization of high-quality CdSe core/shell nanocrystals.
    Li S; Steigerwald ML; Brus LE
    ACS Nano; 2009 May; 3(5):1267-73. PubMed ID: 19374391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving open circuit potential in hybrid P3HT:CdSe bulk heterojunction solar cells via colloidal tert-butylthiol ligand exchange.
    Greaney MJ; Das S; Webber DH; Bradforth SE; Brutchey RL
    ACS Nano; 2012 May; 6(5):4222-30. PubMed ID: 22537193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.