BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 11535230)

  • 21. Immediate plasticity in the motor pathways after spinal cord hemisection: implications for transcranial magnetic motor-evoked potentials.
    Fujiki M; Kobayashi H; Inoue R; Ishii K
    Exp Neurol; 2004 Jun; 187(2):468-77. PubMed ID: 15144873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of in vivo spinal cord conduction velocity in rats in an experimental model of ischemic spinal cord injury.
    Basoglu H; Kurtoglu T; Cetin NK; Bilgin MD; Kiylioglu N
    Spinal Cord; 2013 Aug; 51(8):616-22. PubMed ID: 23689389
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increases in human motoneuron excitability after cervical spinal cord injury depend on the level of injury.
    Thomas CK; Häger CK; Klein CS
    J Neurophysiol; 2017 Feb; 117(2):684-691. PubMed ID: 27852734
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A neuroprotective role of glial cell line-derived neurotrophic factor following moderate spinal cord contusion injury.
    Iannotti C; Ping Zhang Y; Shields CB; Han Y; Burke DA; Xu XM
    Exp Neurol; 2004 Oct; 189(2):317-32. PubMed ID: 15380482
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Early applied electric field stimulation attenuates secondary apoptotic responses and exerts neuroprotective effects in acute spinal cord injury of rats.
    Zhang C; Zhang G; Rong W; Wang A; Wu C; Huo X
    Neuroscience; 2015 Apr; 291():260-71. PubMed ID: 25701712
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Brainstem-evoked muscle potentials: their prognostic value in experimental spinal cord injury in the rat.
    Sun T; Schlag MG; Hopf R; Shen Q; Redl H
    Somatosens Mot Res; 2000; 17(4):317-24. PubMed ID: 11125875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Relationship between Trans-Lesional Conduction, Motor Neuron Pool Excitability, and Motor Function in Dogs with Incomplete Recovery from Severe Spinal Cord Injury.
    Lewis MJ; Howard JF; Olby NJ
    J Neurotrauma; 2017 Nov; 34(21):2994-3002. PubMed ID: 28462632
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reinforcement of motor evoked potentials in patients with spinal cord injury.
    Hayes KC; Allatt RD; Wolfe DL; Kasai T; Hsieh J
    Electroencephalogr Clin Neurophysiol Suppl; 1991; 43():312-29. PubMed ID: 1773771
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 4-Aminopyridine-sensitive neurologic deficits in patients with spinal cord injury.
    Hayes KC; Potter PJ; Wolfe DL; Hsieh JT; Delaney GA; Blight AR
    J Neurotrauma; 1994 Aug; 11(4):433-46. PubMed ID: 7837283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clinically Relevant Levels of 4-Aminopyridine Strengthen Physiological Responses in Intact Motor Circuits in Rats, Especially After Pyramidal Tract Injury.
    Sindhurakar A; Mishra AM; Gupta D; Iaci JF; Parry TJ; Carmel JB
    Neurorehabil Neural Repair; 2017 Apr; 31(4):387-396. PubMed ID: 28107804
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of Athermal Shortwave Diathermy Treatment on Somatosensory Evoked Potentials and Motor Evoked Potentials in Rats With Spinal Cord Injury.
    Xie C; Li X; Fang L; Wang T
    Spine (Phila Pa 1976); 2019 Jul; 44(13):E749-E758. PubMed ID: 31205164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of graded spinal cord injury on the extrapyramidal and pyramidal motor evoked potentials of the rat.
    Shiau JS; Zappulla RA; Nieves J
    Neurosurgery; 1992 Jan; 30(1):76-84. PubMed ID: 1738460
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Origins and conducting pathways of motor evoked potentials elicited by transcranial magnetic stimulation in cats.
    Kawai N; Nagao S
    Neurosurgery; 1992 Sep; 31(3):520-6; discussion 526-7. PubMed ID: 1407432
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury.
    Metz GA; Curt A; van de Meent H; Klusman I; Schwab ME; Dietz V
    J Neurotrauma; 2000 Jan; 17(1):1-17. PubMed ID: 10674754
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acute transplantation of olfactory ensheathing cells or Schwann cells promotes recovery after spinal cord injury in the rat.
    García-Alías G; López-Vales R; Forés J; Navarro X; Verdú E
    J Neurosci Res; 2004 Mar; 75(5):632-41. PubMed ID: 14991839
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcranial magnetic stimulation (TMS) responses elicited in hindlimb muscles as an assessment of synaptic plasticity in spino-muscular circuitry after chronic spinal cord injury.
    Petrosyan HA; Alessi V; Sisto SA; Kaufman M; Arvanian VL
    Neurosci Lett; 2017 Mar; 642():37-42. PubMed ID: 28159637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multi-limb acquisition of motor evoked potentials and its application in spinal cord injury.
    Iyer S; Maybhate A; Presacco A; All AH
    J Neurosci Methods; 2010 Nov; 193(2):210-6. PubMed ID: 20832429
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.
    Song W; Amer A; Ryan D; Martin JH
    Exp Neurol; 2016 Mar; 277():46-57. PubMed ID: 26708732
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Afferent regulation of leg motor cortex excitability after incomplete spinal cord injury.
    Roy FD; Yang JF; Gorassini MA
    J Neurophysiol; 2010 Apr; 103(4):2222-33. PubMed ID: 20181733
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simple measurement of spinal cord evoked potential: a valuable data source in the rat spinal cord injury model.
    Park JP; Kim KJ; Phi JH; Park CK; Kim JH; Kang HJ; Lee D; Han KH; Wang KC; Paek SH
    J Clin Neurosci; 2007 Nov; 14(11):1099-105. PubMed ID: 17719789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.