These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 11535676)

  • 1. Noise priming and the effects of different cochlear centrifugal pathways on loud-sound-induced hearing loss.
    Rajan R
    J Neurophysiol; 2001 Sep; 86(3):1277-88. PubMed ID: 11535676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unilateral hearing losses alter loud sound-induced temporary threshold shifts and efferent effects in the normal-hearing ear.
    Rajan R
    J Neurophysiol; 2001 Mar; 85(3):1257-69. PubMed ID: 11247994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cochlear outer-hair-cell efferents and complex-sound-induced hearing loss: protective and opposing effects.
    Rajan R
    J Neurophysiol; 2001 Dec; 86(6):3073-6. PubMed ID: 11731564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Centrifugal pathways protect hearing sensitivity at the cochlea in noisy environments that exacerbate the damage induced by loud sound.
    Rajan R
    J Neurosci; 2000 Sep; 20(17):6684-93. PubMed ID: 10964973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crossed and uncrossed olivocochlear pathways exacerbate temporary shifts in hearing sensitivity after narrow band sound trauma in normal ears of animals with unilateral hearing impairment.
    Rajan R
    Audiol Neurootol; 2003; 8(5):250-62. PubMed ID: 12904680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contextual modulation of olivocochlear pathway effects on loud sound-induced cochlear hearing desensitization.
    Rajan R
    J Neurophysiol; 2005 Apr; 93(4):1977-88. PubMed ID: 15774711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bandwidth determines modulatory effects of centrifugal pathways on cochlear hearing desensitization caused by loud sound.
    Rajan R
    Eur J Neurosci; 2006 Dec; 24(12):3589-600. PubMed ID: 17229107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contextual modulation of cochlear hearing desensitization depends on the type of loud sound trauma.
    Rajan R
    Hear Res; 2006 Mar; 213(1-2):58-63. PubMed ID: 16439080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bandwidth dependency of cochlear centrifugal pathways in modulating hearing desensitization caused by loud sound.
    Rajan R
    Neuroscience; 2007 Jul; 147(4):1103-13. PubMed ID: 17600627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Additivity of loud-sound--induced threshold losses in the cat under conditions of active or inactive cochlear efferent-mediated protection.
    Rajan R
    J Neurophysiol; 1996 Apr; 75(4):1601-18. PubMed ID: 8727399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of the Medial Olivocochlear System Prevents Hidden Hearing Loss.
    Boero LE; Castagna VC; Di Guilmi MN; Goutman JD; Elgoyhen AB; Gómez-Casati ME
    J Neurosci; 2018 Aug; 38(34):7440-7451. PubMed ID: 30030403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. I. Dependence on electrical stimulation parameters.
    Rajan R
    J Neurophysiol; 1988 Aug; 60(2):549-68. PubMed ID: 3171641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impairments of the medial olivocochlear system increase the risk of noise-induced auditory neuropathy in laboratory mice.
    May BJ; Lauer AM; Roos MJ
    Otol Neurotol; 2011 Dec; 32(9):1568-78. PubMed ID: 21956602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single olivocochlear neurons in the guinea pig. II. Response plasticity due to noise conditioning.
    Brown MC; Kujawa SG; Liberman MC
    J Neurophysiol; 1998 Jun; 79(6):3088-97. PubMed ID: 9636110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Medial olivocochlear efferent terminals are protected by sound conditioning.
    Canlon B; Fransson A; Viberg A
    Brain Res; 1999 Dec; 850(1-2):253-60. PubMed ID: 10629772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasticity of response properties of inferior colliculus neurons following acute cochlear damage.
    Wang J; Salvi RJ; Powers N
    J Neurophysiol; 1996 Jan; 75(1):171-83. PubMed ID: 8822550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of efferent-mediated protection against acoustic overexposure with long maintenance under barbiturate anaesthesia.
    Rajan R
    Audiol Neurootol; 1996; 1(6):339-58. PubMed ID: 9390814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of upper pontine transections on normal cochlear responses and on the protective effects of contralateral acoustic stimulation in barbiturate-anaesthetized normal-hearing guinea pigs.
    Rajan R
    Hear Res; 1990 Apr; 45(1-2):137-44. PubMed ID: 2345112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the noise-protective action of the olivocochlear efferents in humans.
    Wolpert S; Heyd A; Wagner W
    Audiol Neurootol; 2014; 19(1):31-40. PubMed ID: 24281009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimasking effects of the olivocochlear reflex. I. Enhancement of compound action potentials to masked tones.
    Kawase T; Liberman MC
    J Neurophysiol; 1993 Dec; 70(6):2519-32. PubMed ID: 8120596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.