BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 1153625)

  • 1. The role of noradrenaline, dopamine and 5-hydroxytryptamine in the hyperactivity response resulting from the administration of tranylcypramine to rats pretreated with lithium or rubidium.
    Judd A; Parker J; Jenner FA
    Psychopharmacologia; 1975 Apr; 42(1):73-7. PubMed ID: 1153625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of brain 5-hydroxytryptamine in the hyperactivity produced in rats by lithium and monoamine oxidase inhibition.
    Grahame-Smith DG; Green AR
    Br J Pharmacol; 1974 Sep; 52(1):19-26. PubMed ID: 4281339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proceedings: The effects of lithium, rubidium and caesium on the response of rats to tranylcypromine and alpha-methyl-p-tyrosine given separately or in combination.
    Jenner FA; Judd A; Parker J
    Br J Pharmacol; 1975 Jun; 54(2):233P-234P. PubMed ID: 1148523
    [No Abstract]   [Full Text] [Related]  

  • 4. Role of brain amines in the fetal hyperpyrexia caused by tranylcypromine in LiCl-pretreated rats.
    Shimomura K; Hashimoto M; Mori J; Honda F
    Jpn J Pharmacol; 1979 Apr; 29(2):161-70. PubMed ID: 161335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of rubidium, caesium and quinine on 5-HT-mediated behaviour in rat and mouse--1. Rubidium.
    Wang H; Grahame-Smith DG
    Neuropharmacology; 1992 May; 31(5):413-9. PubMed ID: 1382243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effects of lithium chloride on norepinephrine and dopamine metabolism in the rat brain].
    Nozu T; Furukawa T
    Nihon Yakurigaku Zasshi; 1976 Jul; 72(5):619-25. PubMed ID: 1033111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of monoamine oxidase inhibition by clorgyline, deprenil or tranylcypromine on 5-hydroxytryptamine concentrations in rat brain and hyperactivity following subsequent tryptophan administration.
    Green AR; Youdim MB
    Br J Pharmacol; 1975 Nov; 55(3):415-22. PubMed ID: 1203627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of non-selective monoamine oxidase inhibitors, tranylcypromine and nialamide, with inhibitors of 5-hydroxytryptamine, dopamine or noradrenaline re-uptake.
    Marley E; Wozniak KM
    J Psychiatr Res; 1984; 18(2):191-203. PubMed ID: 6235366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithium: modification of behavioral activity and brain biogenic amines in developing hyperthyroid rats.
    Rastoge RB; Singhal RL
    J Pharmacol Exp Ther; 1977 Apr; 201(1):92-102. PubMed ID: 850149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of tranylcypromine stereoisomers, clorgyline and deprenyl on open field activity during long term lithium administration in rats.
    Smith DF
    Psychopharmacology (Berl); 1976 Oct; 50(1):81-4. PubMed ID: 827767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of alpha methyltyrosine and parachlorophenylalanine on open field behavior in rats given tranylcypromine stereoisomers and lithium carbonate.
    Smith DF; Shimizu M
    Pharmacol Biochem Behav; 1976 Nov; 5(5):515-8. PubMed ID: 138857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological properties of the anti-Parkinson drug rasagiline; modification of endogenous brain amines, reserpine reversal, serotonergic and dopaminergic behaviours.
    Finberg JP; Youdim MB
    Neuropharmacology; 2002 Dec; 43(7):1110-8. PubMed ID: 12504917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of mazindol, a non-phenylethylamine anorexigenic agent, on biogenic amine levels and turnover rate.
    Carruba MO; Groppetti A; Mantegazza P; Vicentini L; Zambotti F
    Br J Pharmacol; 1976 Apr; 56(4):431-6. PubMed ID: 1260223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of the uptake of monoamines into synaptosomes from rat brain. Consequences of lithium treatment and withdrawal.
    Ahluwalia P; Singhal RL
    Neuropharmacology; 1985 Aug; 24(8):713-20. PubMed ID: 3837858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurochemical changes in rat brain amines after short- and long-term inhibition of monoamine oxidase by a low dose of tranylcypromine.
    Hampson DR; Baker GB; Coutts RT
    Biol Psychiatry; 1988 Feb; 23(3):227-36. PubMed ID: 3337860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of brain dopamine in the hyperactivity syndrome produced by increased 5-hydroxytryptamine synthesis in rats.
    Green AR; Grahame-Smith DG
    Neuropharmacology; 1974 Nov; 13(10-11):949-59. PubMed ID: 4437730
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of lithium and rubidium on antinociception and behaviour in mice. I. Studies on narcotic analgesics and antagonists.
    Saarnivaara L; Männistö PT
    Arch Int Pharmacodyn Ther; 1976 Aug; 222(2):282-92. PubMed ID: 10866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of repeated lithium administration on the subcellular distribution of 5-hydroxytryptamine in rat brain.
    Atterwill CK; Tordoff AF
    Br J Pharmacol; 1982 Jul; 76(3):413-21. PubMed ID: 7104517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proceedings: The role of brain dopamine in the hyperactivity syndrome produced in rats after administration of L-tryptophan and a monoamine oxidase inhibitor.
    Grahame-Smith DG; Green AR
    Br J Pharmacol; 1974 Mar; 50(3):442P-443P. PubMed ID: 4853875
    [No Abstract]   [Full Text] [Related]  

  • 20. 4-Methoxytranylcypromine, a monoamine oxidase inhibitor: effects on biogenic amines in rat brain following chronic administration.
    Sherry-McKenna RL; Baker GB; Mousseau DD; Coutts RT; Dewhurst WG
    Biol Psychiatry; 1992 May; 31(9):881-8. PubMed ID: 1353376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.