BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 11536305)

  • 21. CIL-102 interacts with microtubule polymerization and causes mitotic arrest following apoptosis in the human prostate cancer PC-3 cell line.
    Huang YT; Huang DM; Guh JH; Chen IL; Tzeng CC; Teng CM
    J Biol Chem; 2005 Jan; 280(4):2771-9. PubMed ID: 15536083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Paclitaxel-induced cell death: where the cell cycle and apoptosis come together.
    Wang TH; Wang HS; Soong YK
    Cancer; 2000 Jun; 88(11):2619-28. PubMed ID: 10861441
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pretreatment with DNA-damaging agents permits selective killing of checkpoint-deficient cells by microtubule-active drugs.
    Blagosklonny MV; Robey R; Bates S; Fojo T
    J Clin Invest; 2000 Feb; 105(4):533-9. PubMed ID: 10683383
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental therapy of human prostate cancer by inhibiting MDM2 expression with novel mixed-backbone antisense oligonucleotides: in vitro and in vivo activities and mechanisms.
    Wang H; Yu D; Agrawal S; Zhang R
    Prostate; 2003 Feb; 54(3):194-205. PubMed ID: 12518324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular effects of taxol and caffeine on pancreatic cancer cells.
    Gururajanna B; Al-Katib AA; Li YW; Aranha O; Vaitkevicius VK; Sarkar FH
    Int J Mol Med; 1999 Nov; 4(5):501-7. PubMed ID: 10534572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Suppression of human prostate cancer cell growth by ciprofloxacin is associated with cell cycle arrest and apoptosis.
    Aranha O; Grignon R; Fernandes N; McDonnell TJ; Wood DP; Sarkar FH
    Int J Oncol; 2003 Apr; 22(4):787-94. PubMed ID: 12632069
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Suppression of N-methyl-N-nitrosourea/testosterone-induced rat prostate cancer growth by celecoxib: effects on cyclooxygenase-2, cell cycle regulation, and apoptosis mechanism(s).
    Narayanan BA; Condon MS; Bosland MC; Narayanan NK; Reddy BS
    Clin Cancer Res; 2003 Aug; 9(9):3503-13. PubMed ID: 12960143
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation of the synergistic effects of paclitaxel and herbal substances and endemic plant extracts on cell cycle and apoptosis signal pathways in prostate cancer cell lines.
    Doğan Şiğva ZÖ; Balci Okcanoğlu T; Biray Avci Ç; Yilmaz Süslüer S; Kayabaşi Ç; Turna B; Dodurga Y; Nazli O; Gündüz C
    Gene; 2019 Mar; 687():261-271. PubMed ID: 30453074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of GL331 in combination with paclitaxel: GL331's interference with paclitaxel-induced cell cycle perturbation and apoptosis.
    Huang TS; Shu CH; Chao Y; Chen LT
    Anticancer Drugs; 2001 Mar; 12(3):259-66. PubMed ID: 11290873
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell cycle arrest and apoptosis of melanoma cells by docosahexaenoic acid: association with decreased pRb phosphorylation.
    Albino AP; Juan G; Traganos F; Reinhart L; Connolly J; Rose DP; Darzynkiewicz Z
    Cancer Res; 2000 Aug; 60(15):4139-45. PubMed ID: 10945621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Involvement of p21 in mitotic exit after paclitaxel treatment in MCF-7 breast adenocarcinoma cell line.
    Barboule N; Chadebech P; Baldin V; Vidal S; Valette A
    Oncogene; 1997 Dec; 15(23):2867-75. PubMed ID: 9419978
    [TBL] [Abstract][Full Text] [Related]  

  • 32. American cranberry (Vaccinium macrocarpon) extract affects human prostate cancer cell growth via cell cycle arrest by modulating expression of cell cycle regulators.
    Déziel B; MacPhee J; Patel K; Catalli A; Kulka M; Neto C; Gottschall-Pass K; Hurta R
    Food Funct; 2012 May; 3(5):556-64. PubMed ID: 22388548
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PC-SPES inhibits cell proliferation by modulating p21, cyclins D, E and B and multiple cell cycle-related genes in prostate cancer cells.
    Lu X; Guo J; Hsieh TC
    Cell Cycle; 2003; 2(1):59-63. PubMed ID: 12695690
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Andrographolide inhibits prostate cancer by targeting cell cycle regulators, CXCR3 and CXCR7 chemokine receptors.
    Mir H; Kapur N; Singh R; Sonpavde G; Lillard JW; Singh S
    Cell Cycle; 2016; 15(6):819-26. PubMed ID: 27029529
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell cycle-dependent antagonistic interactions between paclitaxel and gamma-radiation in combination therapy.
    Sui M; Dziadyk JM; Zhu X; Fan W
    Clin Cancer Res; 2004 Jul; 10(14):4848-57. PubMed ID: 15269161
    [TBL] [Abstract][Full Text] [Related]  

  • 36. IFNalpha induces the expression of the cyclin-dependent kinase inhibitor p21 in human prostate cancer cells.
    Hobeika AC; Subramaniam PS; Johnson HM
    Oncogene; 1997 Mar; 14(10):1165-70. PubMed ID: 9121765
    [TBL] [Abstract][Full Text] [Related]  

  • 37. G1-checkpoint function including a cyclin-dependent kinase 2 regulatory pathway as potential determinant of 7-hydroxystaurosporine (UCN-01)-induced apoptosis and G1-phase accumulation.
    Akiyama T; Sugiyama K; Shimizu M; Tamaoki T; Akinaga S
    Jpn J Cancer Res; 1999 Dec; 90(12):1364-72. PubMed ID: 10665655
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms of Taxol-induced cell death are concentration dependent.
    Torres K; Horwitz SB
    Cancer Res; 1998 Aug; 58(16):3620-6. PubMed ID: 9721870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unique natural antioxidants (NAOs) and derived purified components inhibit cell cycle progression by downregulation of ppRb and E2F in human PC3 prostate cancer cells.
    Bakshi S; Bergman M; Dovrat S; Grossman S
    FEBS Lett; 2004 Aug; 573(1-3):31-7. PubMed ID: 15327971
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Zinc deficiency reduces paclitaxel efficacy in LNCaP prostate cancer cells.
    Killilea AN; Downing KH; Killilea DW
    Cancer Lett; 2007 Dec; 258(1):70-9. PubMed ID: 17905512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.