These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 11536515)

  • 1. On the stereoselective synthesis of (+)-pinoresinol in Forsythia suspensa from its achiral precursor, coniferyl alcohol.
    Davin LB; Bedgar DL; Katayama T; Lewis NG
    Phytochemistry; 1992 Nov; 31(11):3869-74. PubMed ID: 11536515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An extraordinary accumulation of (-)-pinoresinol in cell-free extracts of Forsythia intermedia: evidence for enantiospecific reduction of (+)-pinoresinol.
    Katayama T; Davin LB; Lewis NG
    Phytochemistry; 1992 Nov; 31(11):3875-81. PubMed ID: 11536516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic study of coniferyl alcohol radical binding to the (+)-pinoresinol forming dirigent protein.
    Halls SC; Davin LB; Kramer DM; Lewis NG
    Biochemistry; 2004 Mar; 43(9):2587-95. PubMed ID: 14992596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center.
    Davin LB; Wang HB; Crowell AL; Bedgar DL; Martin DM; Sarkanen S; Lewis NG
    Science; 1997 Jan; 275(5298):362-6. PubMed ID: 8994027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of lignans (-)-secoisolariciresinol and (-)-matairesinol with Forsythia intermedia cell-free extracts.
    Umezawa T; Davin LB; Lewis NG
    J Biol Chem; 1991 Jun; 266(16):10210-7. PubMed ID: 2037574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-steps in one-pot: whole-cell biocatalytic synthesis of enantiopure (+)- and (-)-pinoresinol via kinetic resolution.
    Ricklefs E; Girhard M; Urlacher VB
    Microb Cell Fact; 2016 May; 15():78. PubMed ID: 27160378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of the lignan, (-) secoisolariciresinol, by cell free extracts of Forsythia intermedia.
    Umezawa T; Davin LB; Lewis NG
    Biochem Biophys Res Commun; 1990 Sep; 171(3):1008-14. PubMed ID: 2222424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of new 5-linked pinoresinol lignin models.
    Yue F; Lu F; Sun R; Ralph J
    Chemistry; 2012 Dec; 18(51):16402-10. PubMed ID: 23109283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereochemical diversity in lignan biosynthesis of Arctium lappa L.
    Suzuki S; Umezawa T; Shimada M
    Biosci Biotechnol Biochem; 2002 Jun; 66(6):1262-9. PubMed ID: 12162547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of lignan biosynthesis in Forsythia cell culture.
    Kim HJ; Ono E; Morimoto K; Yamagaki T; Okazawa A; Kobayashi A; Satake H
    Plant Cell Physiol; 2009 Dec; 50(12):2200-9. PubMed ID: 19887541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monolignol oxidation by xylem peroxidase isoforms of Norway spruce (Picea abies) and silver birch (Betula pendula).
    Marjamaa K; Kukkola E; Lundell T; Karhunen P; Saranpää P; Fagerstedt KV
    Tree Physiol; 2006 May; 26(5):605-11. PubMed ID: 16452074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal alteration in amounts of lignans and their glucosides and gene expression of the relevant biosynthetic enzymes in the Forsythia suspense leaf.
    Morimoto K; Satake H
    Biol Pharm Bull; 2013; 36(9):1519-23. PubMed ID: 23832493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pinoresinol-lariciresinol reductase: Substrate versatility, enantiospecificity, and kinetic properties.
    Hwang JK; Moinuddin SGA; Davin LB; Lewis NG
    Chirality; 2020 Jun; 32(6):770-789. PubMed ID: 32201979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pinoresinol-lariciresinol reductases with opposite enantiospecificity determine the enantiomeric composition of lignans in the different organs of Linum usitatissimum L.
    Hemmati S; von Heimendahl CB; Klaes M; Alfermann AW; Schmidt TJ; Fuss E
    Planta Med; 2010 Jun; 76(9):928-34. PubMed ID: 20514607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyphenols from plants used in traditional Indonesian medicine (Jamu): uptake and antioxidative effects in rat H4IIE hepatoma cells.
    Steffan B; Wätjen W; Michels G; Niering P; Wray V; Ebel R; Edrada R; Kahl R; Proksch P
    J Pharm Pharmacol; 2005 Feb; 57(2):233-40. PubMed ID: 15720788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous Separation of Eight Lignans in Forsythia suspensa by β-Cyclodextrin-Modified Capillary Zone Electrophoresis.
    Liang J; Gong FQ; Sun HM
    Molecules; 2018 Feb; 23(3):. PubMed ID: 29495375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coniferyl Alcohol Radical Detection by the Dirigent Protein AtDIR6 Monitored by EPR.
    Modolo C; Ren L; Besson E; Robert V; Gastaldi S; Rousselot-Pailley P; Tron T
    Chembiochem; 2021 Mar; 22(6):992-995. PubMed ID: 33112043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of an H
    Lv Y; Cheng X; Du G; Zhou J; Chen J
    Biotechnol Bioeng; 2017 Sep; 114(9):2066-2074. PubMed ID: 28436004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis.
    Davin LB; Lewis NG
    Plant Physiol; 2000 Jun; 123(2):453-62. PubMed ID: 10859176
    [No Abstract]   [Full Text] [Related]  

  • 20. The content of lignan glycosides in Forsythia flowers and leaves.
    Tokar M; Klimek B
    Acta Pol Pharm; 2004; 61(4):273-8. PubMed ID: 15575593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.