BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 11536572)

  • 41. Ultrasonic damages on cyanobacterial photosynthesis.
    Zhang G; Zhang P; Liu H; Wang B
    Ultrason Sonochem; 2006 Sep; 13(6):501-5. PubMed ID: 16413996
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Subcellular pigment distribution is altered under far-red light acclimation in cyanobacteria that contain chlorophyll f.
    Majumder EL; Wolf BM; Liu H; Berg RH; Timlin JA; Chen M; Blankenship RE
    Photosynth Res; 2017 Nov; 134(2):183-192. PubMed ID: 28895022
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Distribution of excitation energy among photosystem I and photosystem II in red algae. I. Action spectra of light reactions I and II.
    Ried A; Hessenberg B; Metzler H; Ziegler R
    Biochim Biophys Acta; 1977 Feb; 459(2):175-86. PubMed ID: 836816
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of functional bacterial groups in a hypersaline microbial mat community (Salins-de-Giraud, Camargue, France).
    Fourçans A; de Oteyza TG; Wieland A; Solé A; Diestra E; van Bleijswijk J; Grimalt JO; Kühl M; Esteve I; Muyzer G; Caumette P; Duran R
    FEMS Microbiol Ecol; 2004 Dec; 51(1):55-70. PubMed ID: 16329855
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phototrophs in high-iron-concentration microbial mats: physiological ecology of phototrophs in an iron-depositing hot spring.
    Pierson BK; Parenteau MN; Griffin BM
    Appl Environ Microbiol; 1999 Dec; 65(12):5474-83. PubMed ID: 10584006
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biofilm growth and near-infrared radiation-driven photosynthesis of the chlorophyll d-containing cyanobacterium Acaryochloris marina.
    Behrendt L; Schrameyer V; Qvortrup K; Lundin L; Sørensen SJ; Larkum AW; Kühl M
    Appl Environ Microbiol; 2012 Jun; 78(11):3896-904. PubMed ID: 22467501
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Succession in a microbial mat community: a gaian perspective.
    Stolz JF
    Adv Space Res; 1984; 4(12):203-6. PubMed ID: 11537776
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evidence that chlorophyll f functions solely as an antenna pigment in far-red-light photosystem I from Fischerella thermalis PCC 7521.
    Cherepanov DA; Shelaev IV; Gostev FE; Aybush AV; Mamedov MD; Shen G; Nadtochenko VA; Bryant DA; Semenov AY; Golbeck JH
    Biochim Biophys Acta Bioenerg; 2020 Jun; 1861(5-6):148184. PubMed ID: 32179058
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adaptive and acclimative responses of cyanobacteria to far-red light.
    Gan F; Bryant DA
    Environ Microbiol; 2015 Oct; 17(10):3450-65. PubMed ID: 26234306
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Non-photochemical quenching of fluorescence in cyanobacteria.
    Karapetyan NV
    Biochemistry (Mosc); 2007 Oct; 72(10):1127-35. PubMed ID: 18021070
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fiber-optic fluorometer for microscale mapping of photosynthetic pigments in microbial communities.
    Thar R; Kühl M; Holst G
    Appl Environ Microbiol; 2001 Jun; 67(6):2823-8. PubMed ID: 11375200
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Whiting events: biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton.
    Thompson JB; Schultze-Lam S; Beveridge TJ; Des Marais DJ
    Limnol Oceanogr; 1997 Jan; 42(1):133-41. PubMed ID: 11541205
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Function of chlorophyll d in reaction centers of photosystems I and II of the oxygenic photosynthesis of Acaryochloris marina.
    Itoh S; Mino H; Itoh K; Shigenaga T; Uzumaki T; Iwaki M
    Biochemistry; 2007 Oct; 46(43):12473-81. PubMed ID: 17918957
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pretilachlor toxicity is decided by discrete photo-acclimatizing conditions: Physiological and biochemical evidence from Anabaena sp. and Nostoc muscorum.
    Kumar J; Patel A; Tiwari S; Tiwari S; Srivastava PK; Prasad SM
    Ecotoxicol Environ Saf; 2018 Jul; 156():344-353. PubMed ID: 29573725
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chlorophyll a with a farnesyl tail in thermophilic cyanobacteria.
    Wiwczar JM; LaFountain AM; Wang J; Frank HA; Brudvig GW
    Photosynth Res; 2017 Nov; 134(2):175-182. PubMed ID: 28741056
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genome and proteome of the chlorophyll f-producing cyanobacterium Halomicronema hongdechloris: adaptative proteomic shifts under different light conditions.
    Chen M; Hernandez-Prieto MA; Loughlin PC; Li Y; Willows RD
    BMC Genomics; 2019 Mar; 20(1):207. PubMed ID: 30866821
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Photosynthesis supported by a chlorophyll f-dependent, entropy-driven uphill energy transfer in Halomicronema hongdechloris cells adapted to far-red light.
    Schmitt FJ; Campbell ZY; Bui MV; Hüls A; Tomo T; Chen M; Maksimov EG; Allakhverdiev SI; Friedrich T
    Photosynth Res; 2019 Mar; 139(1-3):185-201. PubMed ID: 30039357
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effects of UV radiation A and B on diurnal variation in photosynthesis in three taxonomically and ecologically diverse microbial mats.
    Cockell CS; Rothschild LJ
    Photochem Photobiol; 1999 Feb; 69(2):203-10. PubMed ID: 11536898
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chromatic photoacclimation, photosynthetic electron transport and oxygen evolution in the chlorophyll d-containing oxyphotobacterium Acaryochloris marina.
    Gloag RS; Ritchie RJ; Chen M; Larkum AW; Quinnell RG
    Biochim Biophys Acta; 2007 Feb; 1767(2):127-35. PubMed ID: 17223068
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Light absorption by the chlorophyll a-b complexes of photosystem II in a leaf with special reference to LHCII.
    Rivadossi A; Zucchelli G; Garlaschi FM; Jennings RC
    Photochem Photobiol; 2004; 80(3):492-8. PubMed ID: 15623336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.