These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 11536572)
41. Structure and molecular organization of the photosynthetic accessory pigments of cyanobacteria and red algae. Glazer AN Mol Cell Biochem; 1977 Dec; 18(2-3):125-40. PubMed ID: 415227 [No Abstract] [Full Text] [Related]
42. Ultrasonic damages on cyanobacterial photosynthesis. Zhang G; Zhang P; Liu H; Wang B Ultrason Sonochem; 2006 Sep; 13(6):501-5. PubMed ID: 16413996 [TBL] [Abstract][Full Text] [Related]
43. Subcellular pigment distribution is altered under far-red light acclimation in cyanobacteria that contain chlorophyll f. Majumder EL; Wolf BM; Liu H; Berg RH; Timlin JA; Chen M; Blankenship RE Photosynth Res; 2017 Nov; 134(2):183-192. PubMed ID: 28895022 [TBL] [Abstract][Full Text] [Related]
44. Distribution of excitation energy among photosystem I and photosystem II in red algae. I. Action spectra of light reactions I and II. Ried A; Hessenberg B; Metzler H; Ziegler R Biochim Biophys Acta; 1977 Feb; 459(2):175-86. PubMed ID: 836816 [TBL] [Abstract][Full Text] [Related]
45. Characterization of functional bacterial groups in a hypersaline microbial mat community (Salins-de-Giraud, Camargue, France). Fourçans A; de Oteyza TG; Wieland A; Solé A; Diestra E; van Bleijswijk J; Grimalt JO; Kühl M; Esteve I; Muyzer G; Caumette P; Duran R FEMS Microbiol Ecol; 2004 Dec; 51(1):55-70. PubMed ID: 16329855 [TBL] [Abstract][Full Text] [Related]
46. Phototrophs in high-iron-concentration microbial mats: physiological ecology of phototrophs in an iron-depositing hot spring. Pierson BK; Parenteau MN; Griffin BM Appl Environ Microbiol; 1999 Dec; 65(12):5474-83. PubMed ID: 10584006 [TBL] [Abstract][Full Text] [Related]
47. Biofilm growth and near-infrared radiation-driven photosynthesis of the chlorophyll d-containing cyanobacterium Acaryochloris marina. Behrendt L; Schrameyer V; Qvortrup K; Lundin L; Sørensen SJ; Larkum AW; Kühl M Appl Environ Microbiol; 2012 Jun; 78(11):3896-904. PubMed ID: 22467501 [TBL] [Abstract][Full Text] [Related]
48. Succession in a microbial mat community: a gaian perspective. Stolz JF Adv Space Res; 1984; 4(12):203-6. PubMed ID: 11537776 [TBL] [Abstract][Full Text] [Related]
49. Evidence that chlorophyll f functions solely as an antenna pigment in far-red-light photosystem I from Fischerella thermalis PCC 7521. Cherepanov DA; Shelaev IV; Gostev FE; Aybush AV; Mamedov MD; Shen G; Nadtochenko VA; Bryant DA; Semenov AY; Golbeck JH Biochim Biophys Acta Bioenerg; 2020 Jun; 1861(5-6):148184. PubMed ID: 32179058 [TBL] [Abstract][Full Text] [Related]
50. Adaptive and acclimative responses of cyanobacteria to far-red light. Gan F; Bryant DA Environ Microbiol; 2015 Oct; 17(10):3450-65. PubMed ID: 26234306 [TBL] [Abstract][Full Text] [Related]
52. Fiber-optic fluorometer for microscale mapping of photosynthetic pigments in microbial communities. Thar R; Kühl M; Holst G Appl Environ Microbiol; 2001 Jun; 67(6):2823-8. PubMed ID: 11375200 [TBL] [Abstract][Full Text] [Related]
53. Whiting events: biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton. Thompson JB; Schultze-Lam S; Beveridge TJ; Des Marais DJ Limnol Oceanogr; 1997 Jan; 42(1):133-41. PubMed ID: 11541205 [TBL] [Abstract][Full Text] [Related]
54. Function of chlorophyll d in reaction centers of photosystems I and II of the oxygenic photosynthesis of Acaryochloris marina. Itoh S; Mino H; Itoh K; Shigenaga T; Uzumaki T; Iwaki M Biochemistry; 2007 Oct; 46(43):12473-81. PubMed ID: 17918957 [TBL] [Abstract][Full Text] [Related]
55. Pretilachlor toxicity is decided by discrete photo-acclimatizing conditions: Physiological and biochemical evidence from Anabaena sp. and Nostoc muscorum. Kumar J; Patel A; Tiwari S; Tiwari S; Srivastava PK; Prasad SM Ecotoxicol Environ Saf; 2018 Jul; 156():344-353. PubMed ID: 29573725 [TBL] [Abstract][Full Text] [Related]
56. Chlorophyll a with a farnesyl tail in thermophilic cyanobacteria. Wiwczar JM; LaFountain AM; Wang J; Frank HA; Brudvig GW Photosynth Res; 2017 Nov; 134(2):175-182. PubMed ID: 28741056 [TBL] [Abstract][Full Text] [Related]
57. Genome and proteome of the chlorophyll f-producing cyanobacterium Halomicronema hongdechloris: adaptative proteomic shifts under different light conditions. Chen M; Hernandez-Prieto MA; Loughlin PC; Li Y; Willows RD BMC Genomics; 2019 Mar; 20(1):207. PubMed ID: 30866821 [TBL] [Abstract][Full Text] [Related]
58. Photosynthesis supported by a chlorophyll f-dependent, entropy-driven uphill energy transfer in Halomicronema hongdechloris cells adapted to far-red light. Schmitt FJ; Campbell ZY; Bui MV; Hüls A; Tomo T; Chen M; Maksimov EG; Allakhverdiev SI; Friedrich T Photosynth Res; 2019 Mar; 139(1-3):185-201. PubMed ID: 30039357 [TBL] [Abstract][Full Text] [Related]
59. The effects of UV radiation A and B on diurnal variation in photosynthesis in three taxonomically and ecologically diverse microbial mats. Cockell CS; Rothschild LJ Photochem Photobiol; 1999 Feb; 69(2):203-10. PubMed ID: 11536898 [TBL] [Abstract][Full Text] [Related]
60. Chromatic photoacclimation, photosynthetic electron transport and oxygen evolution in the chlorophyll d-containing oxyphotobacterium Acaryochloris marina. Gloag RS; Ritchie RJ; Chen M; Larkum AW; Quinnell RG Biochim Biophys Acta; 2007 Feb; 1767(2):127-35. PubMed ID: 17223068 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]