BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 11536603)

  • 21. Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica.
    de la Torre JR; Goebel BM; Friedmann EI; Pace NR
    Appl Environ Microbiol; 2003 Jul; 69(7):3858-67. PubMed ID: 12839754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Incorporation of inorganic carbon by Antarctic cryptoendolithic fungi.
    Palmer RJ; Friedmann EI
    Polarforschung; 1988; 58(2-3):189-91. PubMed ID: 11538354
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Variability in carbon uptake and (re)cycling in Antarctic cryptoendolithic microbial ecosystems demonstrated through radiocarbon analysis of organic biomarkers.
    Brady AL; Goordial J; Sun HJ; Whyte LG; Slater GF
    Geobiology; 2018 Jan; 16(1):62-79. PubMed ID: 29076278
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hemichloris antarctica, gen. et sp. nov. (Chlorococcales, Chlorophyta), a cryptoendolithic alga from Antarctica.
    Tschermak-Woess E; Friedmann EI
    Phycologia; 1984; 23(4):443-54. PubMed ID: 11539602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterococcus endolithicus sp. nov. (Xanthophyceae) and other terrestrial Heterococcus species from Antarctica: morphological changes during life history and response to temperature.
    Darling RB; Friedmann EI; Broady PA
    J Phycol; 1987; 23():598-607. PubMed ID: 11539047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temperature response of Antarctic cryptoendolithic photosynthetic microorganisms.
    Ocampo-Friedmann R; Meyer MA; Chen M; Friedmann EI
    Polarforschung; 1988; 58(2-3):121-4. PubMed ID: 11538353
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The cryptoendolithic microbial environment in the Ross Desert of Antarctica: mathematical models of the thermal regime.
    Nienow JA; McKay CP; Friedmann EI
    Microb Ecol; 1988; 16():253-70. PubMed ID: 11538333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biologically active substances produced by antarctic cryptoendolithic fungi.
    Ocampo-Friedmann R; Friedmann EI
    Antarct J US; 1993; 28(5):252-4. PubMed ID: 11539461
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biologically relevant physical measurements in the ice-free valleys of southern Victoria Land: soil temperature profiles and ultraviolet radiation.
    Nienow JA; Meyer MA
    Antarct J US; 1986; 21(5):222-4. PubMed ID: 11538331
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photosynthetic carbon incorporation and turnover in antarctic cryptoendolithic microbial communities: are they the slowest-growing communities on Earth?
    Johnston CG; Vestal JR
    Appl Environ Microbiol; 1991 Aug; 57(8):2308-11. PubMed ID: 16348539
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Testing a Mars science outpost in the Antarctic dry valleys.
    Andersen DT; McKay CP; Wharton RA; Rummel JD
    Adv Space Res; 1992; 12(5):205-9. PubMed ID: 11537065
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Life form and water source interact to determine active time and environment in cryptogams: an example from the maritime Antarctic.
    Schlensog M; Green TG; Schroeter B
    Oecologia; 2013 Sep; 173(1):59-72. PubMed ID: 23440504
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exobiology and future Mars missions: the search for Mars' earliest biosphere.
    McKay CP
    Adv Space Res; 1986; 6(12):269-85. PubMed ID: 11537831
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lake Hoare, Antarctica: sedimentation through a thick perennial ice cover.
    Squyres SW; Andersen DW; Nedell SS; Wharton RA
    Sedimentology; 1991; 38():363-79. PubMed ID: 11538650
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preliminary report on radiocarbon dating of cryptoendolithic microorganisms.
    Bonani G; Friedmann EI; Ocampo-Friedmann R; McKay CP; Woelfli W
    Polarforschung; 1988; 58(2-3):199-200. PubMed ID: 11538356
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dust: a diagnostic of the hydrologic cycle during the last glacial maximum.
    Yung YL; Lee T; Wang CH; Shieh YT
    Science; 1996 Feb; 271(5251):962-3. PubMed ID: 11536732
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Antarctic cryptoendolithic ecosystem: relevance to exobiology.
    Friedmann EI; Ocampo-Friedmann R
    Orig Life; 1984; 14(1-4):771-6. PubMed ID: 6462703
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Particulate organic matter delta 13C variations across the Drake Passage.
    Rau GH; Takahashi T; Des Marais DJ; Sullivan CW
    J Geophys Res; 1991 Aug; 96(C8):15131-5. PubMed ID: 11538489
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Early martian environments: the Antarctic and other terrestrial analogs.
    Wharton RA; McKay CP; Mancinelli RL; Simmons GM
    Adv Space Res; 1989; 9(6):147-53. PubMed ID: 11537365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stable isotopic biogeochemistry of carbon and nitrogen in a perennially ice-covered Antarctic lake.
    Wharton RA; Lyons WB; Des Marais DJ
    Chem Geol; 1993; 107():159-72. PubMed ID: 11539299
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.