BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 11536629)

  • 1. Carbon isotope effects associated with aceticlastic methanogenesis.
    Gelwicks JT; Risatti JB; Hayes JM
    Appl Environ Microbiol; 1994 Feb; 60(2):467-72. PubMed ID: 11536629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon isotope fractionation during acetoclastic methanogenesis by Methanosaeta concilii in culture and a lake sediment.
    Penning H; Claus P; Casper P; Conrad R
    Appl Environ Microbiol; 2006 Aug; 72(8):5648-52. PubMed ID: 16885323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of temperature and high acetate concentrations on methanogenesis in lake sediment slurries.
    Nozhevnikova AN; Nekrasova V; Ammann A; Zehnder AJ; Wehrli B; Holliger C
    FEMS Microbiol Ecol; 2007 Dec; 62(3):336-44. PubMed ID: 17949433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon isotope effects associated with autotrophic acetogenesis.
    Gelwicks JT; Risatti JB; Hayes JM
    Org Geochem; 1989; 14(4):441-6. PubMed ID: 11542159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic restrictions determine ammonia tolerance of methanogenic pathways in Methanosarcina barkeri.
    Yi Y; Dolfing J; Jin G; Fang X; Han W; Liu L; Tang Y; Cheng L
    Water Res; 2023 Apr; 232():119664. PubMed ID: 36775717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable carbon isotope fractionation by methylotrophic methanogenic archaea.
    Penger J; Conrad R; Blaser M
    Appl Environ Microbiol; 2012 Nov; 78(21):7596-602. PubMed ID: 22904062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The novel regulator HdrR controls the transcription of the heterodisulfide reductase operon
    Zhang S; Chen Y; Wang S; Yang Q; Leng H; Zhao P; Guo L; Dai L; Bai L; Cha G
    Appl Environ Microbiol; 2024 Jun; 90(6):e0069124. PubMed ID: 38809047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of kinetic coefficients using integrated monod and haldane models for low-temperature acetoclastic methanogenesis.
    Lokshina LY; Vavilin VA; Kettunen RH; Rintala JA; Holliger C; Nozhevnikova AN
    Water Res; 2001 Aug; 35(12):2913-22. PubMed ID: 11471691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural abundances of carbon isotopes in acetate from a coastal marine sediment.
    Blair NE; Martens CS; Des Marais DJ
    Science; 1987 Apr; 236():66-8. PubMed ID: 11539717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal variations in the stable carbon isotopic signature of biogenic methane in a coastal sediment.
    Martens CS; Blair NE; Green CD; Des Marais DJ
    Science; 1986 Sep; 233(4770):1300-3. PubMed ID: 11536566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of substrate concentration on carbon isotope fractionation during acetoclastic methanogenesis by Methanosarcina barkeri and M. acetivorans and in rice field soil.
    Goevert D; Conrad R
    Appl Environ Microbiol; 2009 May; 75(9):2605-12. PubMed ID: 19251888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferredoxin-dependent methane formation from acetate in cell extracts of Methanosarcina barkeri (strain MS).
    Fischer R; Thauer RK
    FEBS Lett; 1990 Sep; 269(2):368-72. PubMed ID: 15452975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stable isotope titration method to determine the contribution of acetate disproportionation and carbon dioxide reduction to methanogenesis.
    Gray ND; Matthews JN; Head IM
    J Microbiol Methods; 2006 Apr; 65(1):180-6. PubMed ID: 16099062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental evidence of an acetate transporter protein and characterization of acetate activation in aceticlastic methanogenesis of Methanosarcina mazei.
    Welte C; Kröninger L; Deppenmeier U
    FEMS Microbiol Lett; 2014 Oct; 359(2):147-53. PubMed ID: 25088360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methanogenic cleavage of acetate by lysates of Methanosarcina barkeri.
    Baresi L
    J Bacteriol; 1984 Oct; 160(1):365-70. PubMed ID: 6480559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methanogenic pathway and archaeal community structure in the sediment of eutrophic Lake Dagow: effect of temperature.
    Glissman K; Chin KJ; Casper P; Conrad R
    Microb Ecol; 2004 Oct; 48(3):389-99. PubMed ID: 15692859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutagenesis of the C1 oxidation pathway in Methanosarcina barkeri: new insights into the Mtr/Mer bypass pathway.
    Welander PV; Metcalf WW
    J Bacteriol; 2008 Mar; 190(6):1928-36. PubMed ID: 18178739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable isotope probing of acetate fed anaerobic batch incubations shows a partial resistance of acetoclastic methanogenesis catalyzed by Methanosarcina to sudden increase of ammonia level.
    Hao L; Lü F; Mazéas L; Desmond-Le Quéméner E; Madigou C; Guenne A; Shao L; Bouchez T; He P
    Water Res; 2015 Feb; 69():90-99. PubMed ID: 25437341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for anaerobic syntrophic acetate oxidation during methane production in the profundal sediment of subtropical Lake Kinneret (Israel).
    Nüsslein B; Chin KJ; Eckert W; Conrad R
    Environ Microbiol; 2001 Jul; 3(7):460-70. PubMed ID: 11553236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of acetate-utilizing Bacteria and Archaea in methanogenic profundal sediments of Lake Kinneret (Israel) by stable isotope probing of rRNA.
    Schwarz JI; Lueders T; Eckert W; Conrad R
    Environ Microbiol; 2007 Jan; 9(1):223-37. PubMed ID: 17227427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.