BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 11536737)

  • 1. Temperature dependence of charge recombination in Heliobacillus mobilis.
    Chiou HC; Blankenship RE
    Photochem Photobiol; 1996 Jul; 64(1):32-7. PubMed ID: 11536737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral heterogeneity and time-resolved spectroscopy of excitation energy transfer in membranes of Heliobacillus mobilis at low temperatures.
    Lin S; Kleinherenbrink FA; Chiou HC; Blankenship RE
    Biophys J; 1994 Dec; 67(6):2479-89. PubMed ID: 7696486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-resolved spectroscopy of energy transfer and trapping upon selective excitation in membranes of Heliobacillus mobilis at low temperature.
    Chiou HC; Lin S; Blankenship RE
    J Phys Chem B; 1997 May; 101(20):4136-41. PubMed ID: 11540131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved spectroscopy of energy and electron transfer processes in the photosynthetic bacterium Heliobacillus mobilis.
    Lin S; Chiou HC; Kleinherenbrink FA; Blankenship RE
    Biophys J; 1994 Feb; 66(2 Pt 1):437-45. PubMed ID: 8161697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature dependence of forward and reverse electron transfer from A1-, the reduced secondary electron acceptor in photosystem I.
    Schlodder E; Falkenberg K; Gergeleit M; Brettel K
    Biochemistry; 1998 Jun; 37(26):9466-76. PubMed ID: 9649330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic evidence for the presence of an iron-sulfur center similar to Fx of Photosystem I in Heliobacillus mobilis.
    Kleinherenbrink FA; Chiou HC; LoBrutto R; Blankenship RE
    Photosynth Res; 1994 Jul; 41(1):115-23. PubMed ID: 11539856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane-bound c-type cytochromes in Heliobacillus mobilis. In vivo study of the hemes involved in electron donation to the photosynthetic reaction center.
    Nitschke W; Liebl U; Matsuura K; Kramer DM
    Biochemistry; 1995 Sep; 34(37):11831-9. PubMed ID: 7547917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heliobacterial photosynthesis.
    Heinnickel M; Golbeck JH
    Photosynth Res; 2007 Apr; 92(1):35-53. PubMed ID: 17457690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosynthetic electron-transfer reactions in the green sulfur bacterium Chlorobium vibrioforme: evidence for the functional involvement of iron-sulfur redox centers on the acceptor side of the reaction center.
    Miller M; Liu X; Snyder SW; Thurnauer MC; Biggins J
    Biochemistry; 1992 May; 31(17):4354-63. PubMed ID: 1314661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron transfer in the heliobacterial reaction center: evidence against a quinone-type electron acceptor functioning analogous to A1 in photosystem I.
    Brettel K; Leibl W; Liebl U
    Biochim Biophys Acta; 1998 Mar; 1363(3):175-81. PubMed ID: 9518598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Secondary electron transfer processes in membranes of Heliobacillus mobilis.
    Lin S; Chiou HC; Blankenship RE
    Biochemistry; 1995 Oct; 34(39):12761-7. PubMed ID: 7548030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction center photochemistry of Heliobacterium chlorum.
    Nitschke W; Sétif P; Liebl U; Feiler U; Rutherford AW
    Biochemistry; 1990 Dec; 29(50):11079-88. PubMed ID: 2176893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge recombination between P700+ and A1- occurs directly to the ground state of P700 in a photosystem I core devoid of FX, FB, and FA.
    Warren PV; Golbeck JH; Warden JT
    Biochemistry; 1993 Jan; 32(3):849-57. PubMed ID: 8422389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secondary pair charge recombination in photosystem I under strongly reducing conditions: temperature dependence and suggested mechanism.
    Polm M; Brettel K
    Biophys J; 1998 Jun; 74(6):3173-81. PubMed ID: 9635770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature dependence of charge recombination from the P+QA- and P+QB- states in photosynthetic reaction centers isolated from the thermophilic bacterium Chloroflexus aurantiacus.
    Venturoli G; Trotta M; Feick R; Melandri BA; Zannoni D
    Eur J Biochem; 1991 Dec; 202(2):625-34. PubMed ID: 1761060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral equilibration and primary photochemistry in Heliobacillus mobilis at cryogenic temperature.
    Liebl U; Lambry JC; Breton J; Martin JL; Vos MH
    Biochemistry; 1997 May; 36(19):5912-20. PubMed ID: 9153433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathways of energy transformation in antenna reaction center complexes of Heliobacillus mobilis.
    Neerken S; Aartsma TJ; Amesz J
    Biochemistry; 2000 Mar; 39(12):3297-303. PubMed ID: 10727221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic electron transfer in Heliobacillus mobilis involving a menaquinol-oxidizing cytochrome bc complex and an RCI-type reaction center.
    Kramer DM; Schoepp B; Liebl U; Nitschke W
    Biochemistry; 1997 Apr; 36(14):4203-11. PubMed ID: 9100015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient electron paramagnetic resonance spectroscopy on green-sulfur bacteria and heliobacteria at two microwave frequencies.
    van der Est A; Hager-Braun C; Leibl W; Hauska G; Stehlik D
    Biochim Biophys Acta; 1998 Dec; 1409(2):87-98. PubMed ID: 9838060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron transfer kinetics in photosynthetic reaction centers embedded in trehalose glasses: trapping of conformational substates at room temperature.
    Palazzo G; Mallardi A; Hochkoeppler A; Cordone L; Venturoli G
    Biophys J; 2002 Feb; 82(2):558-68. PubMed ID: 11806901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.