BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11536857)

  • 1. Catalysis of dialanine formation by glycine in the salt-induced peptide formation reaction.
    Suwannachot Y; Rode BM
    Orig Life Evol Biosph; 1998 Feb; 28(1):79-90. PubMed ID: 11536857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigations on the mechanism of the salt-induced peptide formation.
    Schwendinger MG; Rode BM
    Orig Life Evol Biosph; 1992; 22(6):349-59. PubMed ID: 1465297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The catalytic effect of L- and D-histidine on alanine and lysine peptide formation.
    Fitz D; Jakschitz T; Rode BM
    J Inorg Biochem; 2008 Dec; 102(12):2097-102. PubMed ID: 18760483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic effects of histidine enantiomers and glycine on the formation of dileucine and dimethionine in the salt-induced peptide formation reaction.
    Li F; Fitz D; Fraser DG; Rode BM
    Amino Acids; 2010 Jan; 38(1):287-94. PubMed ID: 19214703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The combination of salt induced peptide formation reaction and clay catalysis: a way to higher peptides under primitive earth conditions.
    Rode BM; Son HL; Suwannachot Y
    Orig Life Evol Biosph; 1999 May; 29(3):273-86. PubMed ID: 10465717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycine and diglycine as possible catalytic factors in the prebiotic evolution of peptides.
    Plankensteiner K; Righi A; Rode BM
    Orig Life Evol Biosph; 2002 Jun; 32(3):225-36. PubMed ID: 12227427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic effects of glycine on prebiotic divaline and diproline formation.
    Plankensteiner K; Reiner H; Rode BM
    Peptides; 2005 Jul; 26(7):1109-12. PubMed ID: 15949627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arginine in the salt-induced peptide formation reaction: enantioselectivity facilitated by glycine, L- and D-histidine.
    Li F; Fitz D; Fraser DG; Rode BM
    Amino Acids; 2010 Jul; 39(2):579-85. PubMed ID: 20099003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutual amino acid catalysis in salt-induced peptide formation supports this mechanism's role in prebiotic peptide evolution.
    Suwannachot Y; Rode BM
    Orig Life Evol Biosph; 1999 Oct; 29(5):463-71. PubMed ID: 10573688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methionine peptide formation under primordial earth conditions.
    Li F; Fitz D; Fraser DG; Rode BM
    J Inorg Biochem; 2008; 102(5-6):1212-7. PubMed ID: 18262274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytically increased prebiotic peptide formation: ditryptophan, dilysine, and diserine.
    Plankensteiner K; Reiner H; Rode BM
    Orig Life Evol Biosph; 2005 Oct; 35(5):411-9. PubMed ID: 16231205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Benzyl Ester Group of Amino Acid Monomers Enhances Substrate Affinity and Broadens the Substrate Specificity of the Enzyme Catalyst in Chemoenzymatic Copolymerization.
    Ageitos JM; Yazawa K; Tateishi A; Tsuchiya K; Numata K
    Biomacromolecules; 2016 Jan; 17(1):314-23. PubMed ID: 26620763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rate equation approach to understanding the ion-catalyzed formation of peptides.
    Dubrovskii VG; Sibirev NV; Eliseev IE; Vyazmin SY; Boitsov VM; Natochin YV; Dubina MV
    J Chem Phys; 2013 Jun; 138(24):244906. PubMed ID: 23822273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vancomycin resistance: modeling backbone variants with D-Ala-D-Ala and D-Ala-D-Lac peptides.
    Leung SS; Tirado-Rives J; Jorgensen WL
    Bioorg Med Chem Lett; 2009 Feb; 19(4):1236-9. PubMed ID: 19128968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide chain elongation: a possible role of montmorillonite in prebiotic synthesis of protein precursors.
    Bujdák J; Faybíková K; Eder A; Yongyai Y; Rode BM
    Orig Life Evol Biosph; 1995 Oct; 25(5):431-41. PubMed ID: 7644185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of the interaction of sulfate and hydrogen phosphate radicals with small peptides of glycine, alanine, tyrosine and tryptophan.
    Bosio G; Criado S; Massad W; Rodríguez Nieto FJ; Gonzalez MC; García NA; Mártire DO
    Photochem Photobiol Sci; 2005 Oct; 4(10):840-6. PubMed ID: 16189561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benzophenone semicarbazone protection strategy for synthesis of aza-glycine containing aza-peptides.
    Bourguet CB; Sabatino D; Lubell WD
    Biopolymers; 2008; 90(6):824-31. PubMed ID: 18844293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large differences in the helix propensities of alanine and glycine.
    Chakrabartty A; Schellman JA; Baldwin RL
    Nature; 1991 Jun; 351(6327):586-8. PubMed ID: 2046766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Goethites on the Polymerization of Glycine and Alanine Under Prebiotic Chemistry Conditions.
    Baú JPT; Carneiro CEA; da Costa ACS; Valezi DF; di Mauro E; Pilau E; Zaia DAM
    Orig Life Evol Biosph; 2021 Dec; 51(4):299-320. PubMed ID: 35064872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactions of allyl isothiocyanate with alanine, glycine, and several peptides in model systems.
    Cejpek K; Valusek J; Velísek J
    J Agric Food Chem; 2000 Aug; 48(8):3560-5. PubMed ID: 10956150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.