These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 11536954)

  • 21. Design of specific hardware to obtain embryos and maintain adult urodele amphibians aboard a space station.
    Husson D; Chaput D; Bautz A; Davet J; Durand D; Dournon C; Duprat AM; Gualandris-Parisot L
    Adv Space Res; 2001; 27(2):433-45. PubMed ID: 11642305
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Eye development and the appearance and maintenance of corneal transparency.
    Conrad GW; Funderburgh JL
    Trans Kans Acad Sci; 1992; 95(1-2):34-8. PubMed ID: 11537981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of Gravity, Microgravity or Microgravity Simulation on Early Mammalian Development.
    Ruden DM; Bolnick A; Awonuga A; Abdulhasan M; Perez G; Puscheck EE; Rappolee DA
    Stem Cells Dev; 2018 Sep; 27(18):1230-1236. PubMed ID: 29562866
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thin film bioreactors in space.
    Hughes-Fulford M; Scheld HW
    Adv Space Res; 1989; 9(11):111-7. PubMed ID: 11537324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental studies on the site of propagation of the fertilization-wave in the sea urchin egg.
    Uehara T
    Dev Growth Differ; 1971 Oct; 13(3):165-72. PubMed ID: 5169772
    [No Abstract]   [Full Text] [Related]  

  • 26. Effects of microgravity on vestibular development and function in rats: genetics and environment.
    Ronca AE; Fritzsch B; Alberts JR; Bruce LL
    Korean J Biol Sci; 2000 Sep; 4(3):215-21. PubMed ID: 12760372
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromosomes and plant cell division in space: environmental conditions and experimental details.
    Levine HG; Krikorian AD
    Adv Space Res; 1992; 12(1):73-82. PubMed ID: 11536992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The second generation of the incubator hardware for studying avian embryogenesis under microgravity conditions.
    Sabo V; Boda K; Majek S; Gurjeva TS; Pachomov A; Zongor J
    Acta Astronaut; 1995 Mar; 35(6):421-6. PubMed ID: 11540746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Xenopus laevis embryos can establish their spatial bilateral symmetrical body pattern without gravity.
    Ubbels GA; Reijnen M; Meijerink J; Narraway J
    Adv Space Res; 1994; 14(8):257-69. PubMed ID: 11537925
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microgravity alters protein phosphorylation changes during initiation of sea urchin sperm motility.
    Tash JS; Bracho GE
    FASEB J; 1999; 13 Suppl():S43-54. PubMed ID: 10352144
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Biological Flight Research Facility.
    Johnson CC
    Microgravity Q; 1992 Apr; 2(2):115-21. PubMed ID: 11541048
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Progress in plant research in space.
    Dutcher FR; Hess EL; Halstead TW
    Adv Space Res; 1994; 14(8):159-71. PubMed ID: 11537914
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A step in embryonic axis specification in Xenopus laevis is simulated by cytoplasmic displacements elicited by gravity and centrifugal force.
    Black SD
    Adv Space Res; 1989; 9(11):159-68. PubMed ID: 11537329
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of microgravity on the development of surface righting in rats.
    Walton KD; Harding S; Anschel D; Harris YT; LlinĂ¡s R
    J Physiol; 2005 Jun; 565(Pt 2):593-608. PubMed ID: 15774538
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clinical aspects of the control of plasma volume at microgravity and during return to one gravity.
    Convertino VA
    Med Sci Sports Exerc; 1996 Oct; 28(10 Suppl):S45-52. PubMed ID: 8897404
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies on the development of the sea urchin Strongylocentrotus droebachiensis. I. Ecology and normal development.
    Stephens RE
    Biol Bull; 1972 Feb; 142(1):132-44. PubMed ID: 5010309
    [No Abstract]   [Full Text] [Related]  

  • 37. The centriole-centrosome complex is affected by microgravity during cell division and in cilia of sea urchin embryos: results from space flight experiments.
    Schatten H; Chakrabarti A; Taylor M; Crosser M; Mitchell K
    Microsc Microanal; 1998; 4 Suppl 2():1132-3. PubMed ID: 12143890
    [No Abstract]   [Full Text] [Related]  

  • 38. Effects of microgravity on osteoblast growth.
    Hughes-Fulford M; Tjandrawinata R; Fitzgerald J; Gasuad K; Gilbertson V
    Gravit Space Biol Bull; 1998 May; 11(2):51-60. PubMed ID: 11540639
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The CELSS Test Facility project: an example of a CELSS flight experiment system.
    MacElroy RD; Straight CL
    Adv Space Res; 1992; 12(5):75-81. PubMed ID: 11537082
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acetylcholine synthesis and possible functions during sea urchin development.
    Angelini C; Baccetti B; Piomboni P; Trombino S; Aluigi MG; Stringara S; Gallus L; Falugi C
    Eur J Histochem; 2004; 48(3):235-43. PubMed ID: 15590413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.