These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 11536962)

  • 1. The characteristics of arm movements executed in unusual force environments.
    Bock O
    Adv Space Res; 1992; 12(1):237-41. PubMed ID: 11536962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arm end-point trajectories under normal and micro-gravity environments.
    Papaxanthis C; Pozzo T; McIntyre J
    Acta Astronaut; 1998; 43(3-6):153-61. PubMed ID: 11541921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hand trajectories of vertical arm movements in one-G and zero-G environments. Evidence for a central representation of gravitational force.
    Papaxanthis C; Pozzo T; Popov KE; McIntyre J
    Exp Brain Res; 1998 Jun; 120(4):496-502. PubMed ID: 9655235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of a change in gravity on the dynamics of prehension.
    Augurelle AS; Penta M; White O; Thonnard JL
    Exp Brain Res; 2003 Feb; 148(4):533-40. PubMed ID: 12582839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensorimotor adaptation of point-to-point arm movements after spaceflight: the role of internal representation of gravity force in trajectory planning.
    Gaveau J; Paizis C; Berret B; Pozzo T; Papaxanthis C
    J Neurophysiol; 2011 Aug; 106(2):620-9. PubMed ID: 21562193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do novel gravitational environments alter the grip-force/load-force coupling at the fingertips?
    White O; McIntyre J; Augurelle AS; Thonnard JL
    Exp Brain Res; 2005 Jun; 163(3):324-34. PubMed ID: 15635455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity.
    Papaxanthis C; Pozzo T; McIntyre J
    Neuroscience; 2005; 135(2):371-83. PubMed ID: 16125854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of gravity-like torque on goal-directed arm movements in microgravity.
    Bringoux L; Blouin J; Coyle T; Ruget H; Mouchnino L
    J Neurophysiol; 2012 May; 107(9):2541-8. PubMed ID: 22298835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Load compensation in human goal-directed arm movements.
    Bock O
    Behav Brain Res; 1990 Dec; 41(3):167-77. PubMed ID: 2288670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slowing of human arm movements during weightlessness: the role of vision.
    Mechtcheriakov S; Berger M; Molokanova E; Holzmueller G; Wirtenberger W; Lechner-Steinleitner S; De Col C; Kozlovskaya I; Gerstenbrand F
    Eur J Appl Physiol; 2002 Oct; 87(6):576-83. PubMed ID: 12355199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of movement direction upon kinematic characteristics of vertical arm pointing movements in man.
    Papaxanthis C; Pozzo T; Stapley P
    Neurosci Lett; 1998 Sep; 253(2):103-6. PubMed ID: 9774160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Search of gravity force in the planning of arm pointing movements].
    Papaxanthis C; Pozzo T
    C R Seances Soc Biol Fil; 1996; 190(5-6):613-9. PubMed ID: 9074726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):276-89. PubMed ID: 12522179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Drawing movements and gravitational force: central or peripheral regulation?].
    Papaxanthis C; Pozzo T; Van Hoecke J; Vinter A; Skoura X
    C R Seances Soc Biol Fil; 1998; 192(1):187-93. PubMed ID: 9759362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trajectories of arm pointing movements on the sagittal plane vary with both direction and speed.
    Papaxanthis C; Pozzo T; Schieppati M
    Exp Brain Res; 2003 Feb; 148(4):498-503. PubMed ID: 12582833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of single-limb inertial loading on bilateral reaching: interlimb interactions.
    Hatzitaki V; McKinley P
    Exp Brain Res; 2001 Sep; 140(1):34-45. PubMed ID: 11500796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arm tremor and precision of hand force control in a short and long term flight on the MIR-Space-Station.
    Gallasch E; Kozlovskaya I; Loscher WN; Konev A; Kenner T
    Acta Astronaut; 1994 Jul; 33():49-55. PubMed ID: 11539538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation of arm trajectory during continuous drawing movements in different dynamic environments.
    Fukushi T; Ashe J
    Exp Brain Res; 2003 Jan; 148(1):95-104. PubMed ID: 12478400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual gravity influences arm movement planning.
    Sciutti A; Demougeot L; Berret B; Toma S; Sandini G; Papaxanthis C; Pozzo T
    J Neurophysiol; 2012 Jun; 107(12):3433-45. PubMed ID: 22442569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.