These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11536983)

  • 1. Influence of buoyancy-driven convection on protein separation by free-flow electrophoresis.
    Clifton MJ; Jouve N; Sanchez V
    Adv Space Res; 1992; 12(1):373-83. PubMed ID: 11536983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A potentialgradient-conductivity-scanner for the investigation of effects leading to buoyancy-driven convection on continuous-flow-electrophoresis.
    Heinrich J; Wagner H
    Adv Space Res; 1992; 12(1):385-92. PubMed ID: 11536984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free-flow isotachophoresis under micro-gravity.
    Hirokawa T; Ikuta N; Ishikawa M; Murakami R; Hayakawa S
    Biol Sci Space; 2000 Oct; 14(3):260-1. PubMed ID: 12561871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental study of a constrained vapor bubble fin heat exchanger in the absence of external natural convection.
    Basu S; Plawsky JL; Wayner PC
    Ann N Y Acad Sci; 2004 Nov; 1027():317-29. PubMed ID: 15644365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory and simulation of buoyancy-driven convection around growing protein crystals in microgravity.
    Carotenuto L; Cartwright JH; Castagnolo D; Garcia Ruiz JM; Otalora F
    Microgravity Sci Technol; 2002; 13(3):14-21. PubMed ID: 12206159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Our experience in the evaluation of the thermal comfort during the space flight and in the simulated space environment.
    Novak L
    Acta Astronaut; 1991; 23():179-86. PubMed ID: 11537122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein separation by continuous-flow electrophoresis in microgravity.
    Clifton MJ; Roux-de Balmann H; Sanchez V
    AIChE J; 1996 Jul; 42(7):2069-79. PubMed ID: 11539848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free flow electrophoresis in space shuttle program (Biotex).
    Hannig K; Bauer J
    Adv Space Res; 1989; 9(11):91-6. PubMed ID: 11537356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced modelling of the transport phenomena across horizontal clothing microclimates with natural convection.
    Mayor TS; Couto S; Psikuta A; Rossi RM
    Int J Biometeorol; 2015 Dec; 59(12):1875-89. PubMed ID: 25994799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Space bioprocessing.
    Todd P
    Biotechnology (N Y); 1985 Sep; 3():786-90. PubMed ID: 11540937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification of biological molecules by continuous flow electrophoresis in the Second International Microgravity Laboratory.
    Clifton MJ; Roux-de Balmann H; Sanchez V; Bleuzen-Mariotte V; Schoot BM
    J Biotechnol; 1996 Jun; 47(2-3):341-52. PubMed ID: 11536767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. G-jitter induced magnetohydrodynamics flow of nanofluid with constant convective thermal and solutal boundary conditions.
    Uddin MJ; Khan WA; Ismail AI
    PLoS One; 2015; 10(5):e0122663. PubMed ID: 25933066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of buoyancy-driven convection on nucleation and growth of protein crystals.
    Nanev CN; Penkova A; Chayen N
    Ann N Y Acad Sci; 2004 Nov; 1027():1-9. PubMed ID: 15644340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioprocessing in microgravity: free flow electrophoresis of C. elegans DNA.
    Kobayashi H; Ishii N; Nagaoka S
    J Biotechnol; 1996 Jun; 47(2-3):367-76. PubMed ID: 8987575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Heat transfer analysis of liquid cooling garment used for extravehicular activity].
    Qiu YF; Yuan XG; Mei ZG; Jia SG; Ouyang H; Ren ZS
    Space Med Med Eng (Beijing); 2001 Oct; 14(5):364-7. PubMed ID: 11845824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An overview of challenges in modeling heat and mass transfer for living on Mars.
    Yamashita M; Ishikawa Y; Kitaya Y; Goto E; Arai M; Hashimoto H; Tomita-Yokotani K; Hirafuji M; Omori K; Shiraishi A; Tani A; Toki K; Yokota H; Fujita O
    Ann N Y Acad Sci; 2006 Sep; 1077():232-43. PubMed ID: 17124127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein crystal growth in microgravity using a liquid/liquid diffusion method.
    Wang YP; Han Y; Pan JS; Wang KY; Bi RC
    Microgravity Sci Technol; 1996; 9(4):281-3. PubMed ID: 11540170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow characteristics of two immiscible liquid layers subjected to a horizontal temperature gradient.
    Someya S; Munakata T; Nishio M; Okamoto K; Madarame H
    Ann N Y Acad Sci; 2002 Oct; 972():299-306. PubMed ID: 12496033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joule heating induced stream broadening in free-flow zone electrophoresis.
    Dutta D
    Electrophoresis; 2018 Mar; 39(5-6):760-769. PubMed ID: 29115696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experiment of fractioning animal cell culturing solution in high concentration under microgravity.
    Okusawa T; Tsubouchi K
    Biol Sci Space; 2001 Oct; 15 Suppl():S130. PubMed ID: 11799255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.