These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 11537079)

  • 1. Catalytic wet-oxidation of human wastes produced in space: the effects of temperature elevation.
    Takeda N; Takahashi Y
    Adv Space Res; 1992; 12(5):53-6. PubMed ID: 11537079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluations of catalysts for wet oxidation waste management in CELSS.
    Oguchi M; Nitta K
    Adv Space Res; 1992; 12(5):21-7. PubMed ID: 11537066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The applicability of catalytic wet-oxidation to CELSS.
    Takahashi Y; Nitta K; Ohya H; Oguchi M
    Adv Space Res; 1987; 7(4):81-4. PubMed ID: 11537276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subcritical and supercritical water oxidation of CELSS model wastes.
    Takahashi Y; Wydeven T; Koo C
    Adv Space Res; 1989; 9(8):99-110. PubMed ID: 11537396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An evaluation of the vapor phase catalytic ammonia removal process for use in a Mars transit vehicle.
    Flynn M; Borchers B
    Life Support Biosph Sci; 1998; 5(4):415-21. PubMed ID: 11871448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Material recycling in a regenerative life support system for space use: its issues and waste processing.
    Takahashi Y; Tanaka K
    Adv Space Res; 1992; 12(5):65-73. PubMed ID: 11537081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of the frequency and waveform of the activating current on physicochemical oxidation of organic wastes.
    Morozov Y; Kudenko Y; Trifonov S; Tikhomirov A
    Life Sci Space Res (Amst); 2015 Apr; 5():53-6. PubMed ID: 26177850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Investigation on the elimination of organic substances in urine by supercritical water oxidation].
    Wang T; Yang M; Xiang B; Shen Z
    Space Med Med Eng (Beijing); 1997 Oct; 10(5):370-2. PubMed ID: 11540393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Waste recycling issues in bioregenerative life support.
    MacElroy RD; Wang D
    Adv Space Res; 1989; 9(8):75-84. PubMed ID: 11537394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wet oxidation of domestic sludge and process integration: the Mineralis process.
    Lendormi T; Prévot C; Doppenberg F; Spérandio M; Debellefontaine H
    Water Sci Technol; 2001; 44(10):163-9. PubMed ID: 11794648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water recovery in space.
    Tamponnet C; Savage CJ; Amblard P; Lasserre JC; Personne JC; Germain JC
    ESA Bull; 1999 Mar; 97(5):56-60. PubMed ID: 11725802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sources and processing of CELSS wastes.
    Wydeven T; Tremor J; Koo C; Jacquez R
    Adv Space Res; 1989; 9(8):85-97. PubMed ID: 11537395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technology tradeoffs related to advanced mission waste processing.
    Slavin TJ; Oleson MW
    Waste Manag Res; 1991 Oct; 9(5):401-14. PubMed ID: 11537692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Waste treatment integration in space.
    Baresi L; Kern R
    Waste Manag Res; 1991 Oct; 9(5):485-90. PubMed ID: 11537702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Waste management in space: a NASA symposium. Special issue.
    Waste Manag Res; 1991 Oct; 9(5):323-490. PubMed ID: 11537681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Analysis of mass minimization of Thermoelectric Integrated Membrane Evaporation Subsystem in waste water processing].
    Ren JX; Ji CY; Zhang XR; Wang S; Liang XG; Guo ZY
    Space Med Med Eng (Beijing); 2001 Feb; 14(1):27-30. PubMed ID: 11710392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Element exchange in a water- and gas-closed biological Life Support System.
    Gribovskaya IV; Kudenko YuA ; Gitelson JI
    Adv Space Res; 1997; 20(10):2045-8. PubMed ID: 11542588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Application of nitrifying and denitrifying processes to waste management of aquatic life support in space].
    Shimura R; Kumagai H; Kozu H; Motoki S; Ijiri K; Nagaoka S
    Biol Sci Space; 2000 Oct; 14(3):138-9. PubMed ID: 12561845
    [No Abstract]   [Full Text] [Related]  

  • 19. Analysis of an algae-based CELSS. Part 2: options and weight analysis.
    Holtzapple MT; Little FE; Moses WM; Patterson CO
    Acta Astronaut; 1989 Apr; 19(4):365-75. PubMed ID: 11541160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prospects for using a full-scale installation for wet combustion of organic wastes in closed life support systems.
    Trifonov SV; Kudenko YA; Tikhomirov AA
    Life Sci Space Res (Amst); 2015 Nov; 7():15-21. PubMed ID: 26553633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.