These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 11537107)
1. A new continuum model for suspensions of gyrotactic micro-organisms. Pedley TJ; Kessler JO J Fluid Mech; 1990 Mar; 212():155-82. PubMed ID: 11537107 [TBL] [Abstract][Full Text] [Related]
2. The growth of bioconvection patterns in a uniform suspension of gyrotactic micro-organisms. Pedley TJ; Hill NA; Kessler JO J Fluid Mech; 1988; 195():223-37. PubMed ID: 11543357 [TBL] [Abstract][Full Text] [Related]
3. A biased random walk model for the trajectories of swimming micro-organisms. Hill NA; Hader DP J Theor Biol; 1997 Jun; 186(4):503-26. PubMed ID: 11536821 [TBL] [Abstract][Full Text] [Related]
4. Sedimenting particles and swimming micro-organisms in a rotating fluid. Kessler JO; Hill NA; Strittmatter R; Wiseley D Adv Space Res; 1998; 21(8-9):1269-75. PubMed ID: 11541381 [TBL] [Abstract][Full Text] [Related]
5. The dynamics of unicellular swimming organisms. Kessler JO ASGSB Bull; 1991 Jul; 4(2):97-105. PubMed ID: 11537187 [TBL] [Abstract][Full Text] [Related]
6. Theory and experimental results on gravitational effects on monocellular algae. Kessler JO Adv Space Res; 1992; 12(1):33-42. PubMed ID: 11536976 [TBL] [Abstract][Full Text] [Related]
7. Extensional rheology of active suspensions. Saintillan D Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056307. PubMed ID: 20866322 [TBL] [Abstract][Full Text] [Related]
8. Wavelengths of gyrotactic plumes in bioconvection. Ghorai S; Hill NA Bull Math Biol; 2000 May; 62(3):429-50. PubMed ID: 10812715 [TBL] [Abstract][Full Text] [Related]
9. Wavelength Selection in Gyrotactic Bioconvection. Ghorai S; Singh R; Hill NA Bull Math Biol; 2015 Jun; 77(6):1166-84. PubMed ID: 25963246 [TBL] [Abstract][Full Text] [Related]
10. Fluid particle diffusion in a semidilute suspension of model micro-organisms. Ishikawa T; Locsei JT; Pedley TJ Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021408. PubMed ID: 20866810 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of the smallest nonvanishing eigenvalue of the fokker-planck equation for brownian motion in a potential: the continued fraction approach. Kalmykov YP Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt A):6320-9. PubMed ID: 11088307 [TBL] [Abstract][Full Text] [Related]
12. Motility-induced inter-particle correlations and dynamics: a microscopic approach for active Brownian particles. Dhont JKG; Park GW; Briels WJ Soft Matter; 2021 Jun; 17(22):5613-5632. PubMed ID: 33998621 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the smallest nonvanishing eigenvalue of the fokker-planck equation for the brownian motion in a potential. II. The matrix continued fraction approach. Kalmykov YP Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt A):227-36. PubMed ID: 11088456 [TBL] [Abstract][Full Text] [Related]
14. Effective viscosity of a suspension of flagellar-beating microswimmers: Three-dimensional modeling. Jibuti L; Zimmermann W; Rafaï S; Peyla P Phys Rev E; 2017 Nov; 96(5-1):052610. PubMed ID: 29347779 [TBL] [Abstract][Full Text] [Related]
15. Gyrotactic cluster formation of bottom-heavy squirmers. Rühle F; Zantop AW; Stark H Eur Phys J E Soft Matter; 2022 Mar; 45(3):26. PubMed ID: 35304659 [TBL] [Abstract][Full Text] [Related]
16. Fokker-Planck perspective on stochastic delay systems: exact solutions and data analysis of biological systems. Frank TD; Beek PJ; Friedrich R Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021912. PubMed ID: 14525011 [TBL] [Abstract][Full Text] [Related]
17. Diffusion in a bistable system: The eigenvalue spectrum of the Fokker-Planck operator and Kramers' reaction rate theory. Zhan Y; Shizgal BD Phys Rev E; 2019 Apr; 99(4-1):042101. PubMed ID: 31108642 [TBL] [Abstract][Full Text] [Related]
18. Colored-noise Fokker-Planck equation for the shear-induced self-diffusion process of non-Brownian particles. Lukassen LJ; Oberlack M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052145. PubMed ID: 25353777 [TBL] [Abstract][Full Text] [Related]
19. Turbulent fluid acceleration generates clusters of gyrotactic microorganisms. De Lillo F; Cencini M; Durham WM; Barry M; Stocker R; Climent E; Boffetta G Phys Rev Lett; 2014 Jan; 112(4):044502. PubMed ID: 24580457 [TBL] [Abstract][Full Text] [Related]
20. Suspension biomechanics of swimming microbes. Ishikawa T J R Soc Interface; 2009 Oct; 6(39):815-34. PubMed ID: 19674997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]