These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 11537107)
21. Rate theory models for ion transport through rigid pores. III. Continuum vs discrete models in single file diffusion. Stephan W; Kleutsch B; Frehland E J Theor Biol; 1983 Nov; 105(2):287-310. PubMed ID: 6317988 [TBL] [Abstract][Full Text] [Related]
22. Active colloidal suspensions exhibit polar order under gravity. Enculescu M; Stark H Phys Rev Lett; 2011 Jul; 107(5):058301. PubMed ID: 21867100 [TBL] [Abstract][Full Text] [Related]
23. Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy. Shizgal BD Phys Rev E; 2018 May; 97(5-1):052144. PubMed ID: 29906998 [TBL] [Abstract][Full Text] [Related]
24. Dynamical behavior of a nonlocal Fokker-Planck equation for a stochastic system with tempered stable noise. Lin L; Duan J; Wang X; Zhang Y Chaos; 2021 May; 31(5):051105. PubMed ID: 34240951 [TBL] [Abstract][Full Text] [Related]
25. Ratcheting of Brownian swimmers in periodically corrugated channels: a reduced Fokker-Planck approach. Yariv E; Schnitzer O Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032115. PubMed ID: 25314403 [TBL] [Abstract][Full Text] [Related]
26. Consumption, supply and transport: self-organization without direct communication. Kessler JO Math Comput Simul; 1996 Apr; 40(3-4):359-70. PubMed ID: 11539395 [TBL] [Abstract][Full Text] [Related]
27. Hydrodynamic interactions among large populations of swimming micro-organisms. Delmotte B; Climent E; Plouraboué F Comput Methods Biomech Biomed Engin; 2013; 16 Suppl 1():6-8. PubMed ID: 23923827 [No Abstract] [Full Text] [Related]
28. Generalized hydrodynamics of a dilute suspension of finite-sized particles: dynamic viscosity. Hernández SI; Santamaría-Holek I; Mendoza CI; del Castillo LF Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051401. PubMed ID: 17279903 [TBL] [Abstract][Full Text] [Related]
30. Rheology and contact lifetimes in dense granular flows. Silbert LE; Grest GS; Brewster R; Levine AJ Phys Rev Lett; 2007 Aug; 99(6):068002. PubMed ID: 17930867 [TBL] [Abstract][Full Text] [Related]
31. The Fokker-Planck equation of the superstatistical fractional Brownian motion with application to passive tracers inside cytoplasm. Runfola C; Vitali S; Pagnini G R Soc Open Sci; 2022 Nov; 9(11):221141. PubMed ID: 36340511 [TBL] [Abstract][Full Text] [Related]
32. Preferential Sampling and Small-Scale Clustering of Gyrotactic Microswimmers in Turbulence. Gustavsson K; Berglund F; Jonsson PR; Mehlig B Phys Rev Lett; 2016 Mar; 116(10):108104. PubMed ID: 27015512 [TBL] [Abstract][Full Text] [Related]
33. Fokker-Planck equation with arbitrary dc and ac fields: continued fraction method. Lee CK; Gong J Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011104. PubMed ID: 21867110 [TBL] [Abstract][Full Text] [Related]
34. Solid-solid contacts due to surface roughness and their effects on suspension behaviour. Davis RH; Zhao Y; Galvin KP; Wilson HJ Philos Trans A Math Phys Eng Sci; 2003 May; 361(1806):871-94. PubMed ID: 12804219 [TBL] [Abstract][Full Text] [Related]
35. Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms. Leptos KC; Guasto JS; Gollub JP; Pesci AI; Goldstein RE Phys Rev Lett; 2009 Nov; 103(19):198103. PubMed ID: 20365957 [TBL] [Abstract][Full Text] [Related]
36. Solution of Fokker-Planck equation for a broad class of drift and diffusion coefficients. Fa KS Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):012102. PubMed ID: 21867236 [TBL] [Abstract][Full Text] [Related]
37. Derivation of a hydrodynamic theory for mesoscale dynamics in microswimmer suspensions. Reinken H; Klapp SHL; Bär M; Heidenreich S Phys Rev E; 2018 Feb; 97(2-1):022613. PubMed ID: 29548118 [TBL] [Abstract][Full Text] [Related]
38. Translational and rotational dynamics of colloidal particles in suspension: effect of shear. Hernández-Contreras M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022317. PubMed ID: 24032842 [TBL] [Abstract][Full Text] [Related]
39. A stochastic model for directional changes of swimming bacteria. Fier G; Hansmann D; Buceta RC Soft Matter; 2017 May; 13(18):3385-3394. PubMed ID: 28429013 [TBL] [Abstract][Full Text] [Related]
40. Multivariate Markov processes for stochastic systems with delays: application to the stochastic Gompertz model with delay. Frank TD Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 1):011914. PubMed ID: 12241391 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]