These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Growing crops for space explorers on the moon, Mars, or in space. Salisbury FB Adv Space Biol Med; 1999; 7():131-62. PubMed ID: 10660775 [TBL] [Abstract][Full Text] [Related]
3. Some challenges in designing a lunar, Martian, or microgravity CELSS. Salisbury FB Acta Astronaut; 1992; 27():211-7. PubMed ID: 11537566 [TBL] [Abstract][Full Text] [Related]
4. Lunar outpost agriculture. Hossner LR; Ming DW; Henninger DL; Allen ER Endeavour; 1991; 15(2):79-85. PubMed ID: 11537088 [TBL] [Abstract][Full Text] [Related]
5. [Engineering issues of microbial ecology in space agriculture]. Yamashita M; Ishikawa Y; Oshima T; Biol Sci Space; 2005 Mar; 19(1):25-36. PubMed ID: 16118479 [TBL] [Abstract][Full Text] [Related]
6. Use of lunar regolith as a substrate for plant growth. Ming DW; Henninger DL Adv Space Res; 1994; 14(11):435-43. PubMed ID: 11538023 [TBL] [Abstract][Full Text] [Related]
7. Lunar farming: achieving maximum yield for the exploration of space. Salisbury FB HortScience; 1991; 26(7):827-33. PubMed ID: 11537565 [No Abstract] [Full Text] [Related]
8. Implementation of biological elements in life support systems: rationale and development milestones. Tamponnet C; Kratschmann C; Hurtl H; Sacher R; Ramdi H; Lievremont M ESA Bull; 1993 May; 74():71-82. PubMed ID: 11540733 [TBL] [Abstract][Full Text] [Related]
9. Farming in space: environmental and biophysical concerns. Monje O; Stutte GW; Goins GD; Porterfield DM; Bingham GE Adv Space Res; 2003; 31(1):151-67. PubMed ID: 12577999 [TBL] [Abstract][Full Text] [Related]
10. Plants for water recycling, oxygen regeneration and food production. Bubenheim DL Waste Manag Res; 1991 Oct; 9(5):435-43. PubMed ID: 11537696 [TBL] [Abstract][Full Text] [Related]
11. Space farming in the 21st century. Salisbury FB; Bugbee BG 21st Century Sci Technol; 1988; 1(1):32-41. PubMed ID: 11539083 [No Abstract] [Full Text] [Related]
12. Biological-physical-chemical aspects of a human life support system for a lunar base. Gitelson JI; Blum V; Grigoriev AI; Lisovsky GM; Manukovsky NS; Sinyak YuE ; Ushakova SA Acta Astronaut; 1995 Oct; 37():385-94. PubMed ID: 11541109 [TBL] [Abstract][Full Text] [Related]
13. A review of recent activities in the NASA CELSS program. MacElroy RD; Tremor J; Smernoff DT; Knott W; Prince RP Adv Space Res; 1987; 7(4):53-7. PubMed ID: 11537270 [TBL] [Abstract][Full Text] [Related]
14. Human life support for advanced space exploration. Schwartzkopf SH Adv Space Biol Med; 1997; 6():231-53. PubMed ID: 9048141 [TBL] [Abstract][Full Text] [Related]
15. Suggestions for crops grown in controlled ecological life-support systems, based on attractive vegetarian diets. Salisbury FB; Clark MA Adv Space Res; 1996; 18(4-5):33-9. PubMed ID: 11538812 [TBL] [Abstract][Full Text] [Related]
16. Choosing plants to be grown in a Controlled Environment Life Support System (CELSS) based upon attractive vegetarian diets. Salisbury FB; Clark MA Life Support Biosph Sci; 1996; 2(3-4):169-79. PubMed ID: 11538565 [TBL] [Abstract][Full Text] [Related]
17. Carbon balance and productivity of Lemna gibba, a candidate plant for CELSS. Gale J; Smernoff DT; Macler BA; MacElroy RD Adv Space Res; 1989; 9(8):43-52. PubMed ID: 11537389 [TBL] [Abstract][Full Text] [Related]
18. Carbon balance in bioregenerative life support systems: some effects of system closure, waste management, and crop harvest index. Wheeler RM Adv Space Res; 2003; 31(1):169-75. PubMed ID: 12578002 [TBL] [Abstract][Full Text] [Related]
19. The minimal cost of life in space. Drysdale AE; Rutkze CJ; Albright LD; LaDue RL Adv Space Res; 2004; 34(7):1502-8. PubMed ID: 15846879 [TBL] [Abstract][Full Text] [Related]
20. Life support approaches for Mars missions. Drysdale AE; Ewert MK; Hanford AJ Adv Space Res; 2003; 31(1):51-61. PubMed ID: 12577926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]