BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 11537155)

  • 21. Extreme environments and exobiology.
    Friedmann EI
    Plant Biosyst; 1993; 127(3):369-76. PubMed ID: 11539430
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The cryptoendolithic microbial environment in the Ross Desert of Antarctica: mathematical models of the thermal regime.
    Nienow JA; McKay CP; Friedmann EI
    Microb Ecol; 1988; 16():253-70. PubMed ID: 11538333
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring the limits of crop productivity. I. Photosynthetic efficiency of wheat in high irradiance environments.
    Bugbee BG; Salisbury FB
    Plant Physiol; 1988; 88(3):869-78. PubMed ID: 11537442
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Perennial Antarctic lake ice: an oasis for life in a polar desert.
    Priscu JC; Fritsen CH; Adams EE; Giovannoni SJ; Paerl HW; McKay CP; Doran PT; Gordon DA; Lanoil BD; Pinckney JL
    Science; 1998 Jun; 280(5372):2095-8. PubMed ID: 9641910
    [TBL] [Abstract][Full Text] [Related]  

  • 25. History of water on Mars: a biological perspective.
    McKay CP; Friedmann EI; Wharton RA; Davies WL; Friedman EI
    Adv Space Res; 1992; 12(4):231-8. PubMed ID: 11538143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Communities adjust their temperature optima by shifting producer-to-consumer ratio, shown in lichens as models: I. Hypothesis.
    Friedmann EI; Sun HJ
    Microb Ecol; 2005 May; 49(4):523-7. PubMed ID: 15891938
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel long-chain anteiso-alkanes and anteiso-alkanoic acids in Antarctic rocks colonized by living and fossil cryptoendolithic microorganisms.
    Matsumoto GI; Friedmann EI; Watanuki K; Ocampo-Friedmann R
    J Chromatogr; 1992; 598(2):267-76. PubMed ID: 11538045
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variability in carbon uptake and (re)cycling in Antarctic cryptoendolithic microbial ecosystems demonstrated through radiocarbon analysis of organic biomarkers.
    Brady AL; Goordial J; Sun HJ; Whyte LG; Slater GF
    Geobiology; 2018 Jan; 16(1):62-79. PubMed ID: 29076278
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Incorporation of inorganic carbon by Antarctic cryptoendolithic fungi.
    Palmer RJ; Friedmann EI
    Polarforschung; 1988; 58(2-3):189-91. PubMed ID: 11538354
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Current and potential productivity of wheat for a Controlled Environment Life Support System.
    Bugbee BG; Salisbury FB
    Adv Space Res; 1989; 9(8):5-15. PubMed ID: 11537390
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microscale characterization of dissolved organic matter production and uptake in marine microbial mat communities.
    Paerl HW; Bebout BM; Joye SB; Des Marais DJ
    Limnol Oceanogr; 1993; 38(6):1150-61. PubMed ID: 11539296
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts.
    Palmer RJ; Friedmann EI
    Microb Ecol; 1990 Jan; 19(1):111-8. PubMed ID: 24196258
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photosynthetic recovery and acclimation to excess light intensity in the rehydrated lichen soil crusts.
    Wu L; Lei Y; Lan S; Hu C
    PLoS One; 2017; 12(3):e0172537. PubMed ID: 28257469
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon balance and productivity of Lemna gibba, a candidate plant for CELSS.
    Gale J; Smernoff DT; Macler BA; MacElroy RD
    Adv Space Res; 1989; 9(8):43-52. PubMed ID: 11537389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stable isotopic biogeochemistry of carbon and nitrogen in a perennially ice-covered Antarctic lake.
    Wharton RA; Lyons WB; Des Marais DJ
    Chem Geol; 1993; 107():159-72. PubMed ID: 11539299
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Response of desert biological soil crusts to alterations in precipitation frequency.
    Belnap J; Phillips SL; Miller ME
    Oecologia; 2004 Oct; 141(2):306-16. PubMed ID: 14689292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon dioxide interactions with irradiance and temperature in potatoes.
    Cao W; Tibbitts TW; Wheeler RM
    Adv Space Res; 1994 Nov; 14(11):243-50. PubMed ID: 11540189
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Can Antarctic lichens acclimatize to changes in temperature?
    Colesie C; Büdel B; Hurry V; Green TGA
    Glob Chang Biol; 2018 Mar; 24(3):1123-1135. PubMed ID: 29143417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in net ecosystem productivity of boreal black spruce stands in response to changes in temperature at diurnal and seasonal time scales.
    Grant RF; Margolis HA; Barr AG; Black TA; Dunn AL; Bernier PY; Bergeron O
    Tree Physiol; 2009 Jan; 29(1):1-17. PubMed ID: 19203928
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microclimate and limits to photosynthesis in a diverse community of hypolithic cyanobacteria in northern Australia.
    Tracy CR; Streten-Joyce C; Dalton R; Nussear KE; Gibb KS; Christian KA
    Environ Microbiol; 2010 Mar; 12(3):592-607. PubMed ID: 19919538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.