These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 11537155)

  • 41. The effect of low temperature on Antarctic endolithic green algae.
    Meyer MA; Huang G-H ; Morris GJ; Friedmann EI
    Polarforschung; 1988; 58(2-3):113-9. PubMed ID: 11538352
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Measurement of CO2 exchange between Boreal forest and the atmosphere.
    Black TA; Gaumont-Guay D; Jassal RS; Amiro BD; Jarvis PG; Gower ST; Kelliher FM; Dunn A; Wofsy SC
    SEB Exp Biol Ser; 2005; ():151-85. PubMed ID: 17633035
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Photosynthetic fractionation of 13C and concentrations of dissolved CO2 in the central equatorial Pacific during the last 255,000 years.
    Jasper JP; Hayes JM; Mix AC; Prahl FG
    Paleoceanography; 1994 Dec; 9(6):781-98. PubMed ID: 11539420
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert.
    Friedmann EI; Weed R
    Science; 1987 May; 236(4802):703-5. PubMed ID: 11536571
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Habitat stress initiates changes in composition, CO2 gas exchange and C-allocation as life traits in biological soil crusts.
    Colesie C; Green TG; Haferkamp I; Büdel B
    ISME J; 2014 Oct; 8(10):2104-15. PubMed ID: 24694713
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biologically active substances produced by antarctic cryptoendolithic fungi.
    Ocampo-Friedmann R; Friedmann EI
    Antarct J US; 1993; 28(5):252-4. PubMed ID: 11539461
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Application of photosynthetic N2-fixing cyanobacteria to the CELSS program.
    Fry IV; Hrabeta J; D'Souza J; Packer L
    Adv Space Res; 1987; 7(4):39-46. PubMed ID: 11537268
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modelling the carbon balance in bryophytes and lichens: Presentation of PoiCarb 1.0, a new model for explaining distribution patterns and predicting climate-change effects.
    Nikolić N; Zotz G; Bader MY
    Am J Bot; 2024 Jan; 111(1):e16266. PubMed ID: 38038342
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Estimation of Endocarpon pusillum Hedwig carbon budget in the Tengger Desert based on its photosynthetic rate.
    Ding L; Zhou Q; Wei J
    Sci China Life Sci; 2013 Sep; 56(9):848-55. PubMed ID: 23907293
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photosynthetic microbes in freezing deserts.
    Thomas DN
    Trends Microbiol; 2005 Mar; 13(3):87-8. PubMed ID: 15737723
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The responses of photosynthesis and oxygen consumption to short-term changes in temperature and irradiance in a cyanobacterial mat (Ebro Delta, Spain).
    Epping E; Kühl M
    Environ Microbiol; 2000 Aug; 2(4):465-74. PubMed ID: 11234934
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Carbon dioxide effects on potato growth under different photoperiods and irradiance.
    Wheeler RM; Tibbitts TW; Fitzpatrick AH
    Crop Sci; 1991; 31(5):1209-13. PubMed ID: 11537629
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Diurnal and Seasonal Variations in the Net Ecosystem CO2 Exchange of a Pasture in the Three-River Source Region of the Qinghai-Tibetan Plateau.
    Wang B; Jin H; Li Q; Chen D; Zhao L; Tang Y; Kato T; Gu S
    PLoS One; 2017; 12(1):e0170963. PubMed ID: 28129406
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The relationship between delta 13C of organic matter and [CO2(aq)] in ocean surface water: data from a JGOFS site in the northeast Atlantic Ocean and a model.
    Rau GH; Takahashi T; Des Marais DJ; Repeta DJ; Martin JH
    Geochim Cosmochim Acta; 1992; 56():1413-9. PubMed ID: 11537204
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sensitivity of photosynthetic processes to freezing temperature in extremophilic lichens evaluated by linear cooling and chlorophyll fluorescence.
    Hájek J; Barták M; Hazdrová J; Forbelská M
    Cryobiology; 2016 Dec; 73(3):329-334. PubMed ID: 27729220
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characteristics of photosynthesis and stomatal conductance in the shrubland species manuka (Leptospermum scoparium) and kanuka (Kunzea ericoides) for the estimation of annual canopy carbon uptake.
    Whitehead D; Walcroft AS; Scott NA; Townsend JA; Trotter CM; Rogers GN
    Tree Physiol; 2004 Jul; 24(7):795-804. PubMed ID: 15123451
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A preliminary comparison of two perennially ice-covered lakes in Antarctica: analogs of past Martian lacustrine environments.
    Andersen DT; Doran P; Bolshiyanov D; Rice J; Galchenko V; Cherych N; Wharton RA; McKay CP; Meyer M; Garshnek V
    Adv Space Res; 1995 Mar; 15(3):199-202. PubMed ID: 11539225
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Epilithic lichens in the Beacon sandstone formation, Victoria Land, Antarctica.
    Hale ME
    Lichenologist (Lond); 1987; 19(3):269-87. PubMed ID: 11539716
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biogeochemistry of oxalate in the antarctic cryptoendolithic lichen-dominated community.
    Johnston CG; Vestal JR
    Microb Ecol; 1993 May; 25(3):305-19. PubMed ID: 24189925
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ecophysiology and genetic structure of polar versus temperate populations of the lichen Cetraria aculeata.
    Domaschke S; Vivas M; Sancho LG; Printzen C
    Oecologia; 2013 Nov; 173(3):699-709. PubMed ID: 23649754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.