These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 11537408)
1. Impact constraints on the environment for chemical evolution and the continuity of life. Oberbeck VR; Fogleman G Orig Life Evol Biosph; 1990; 20():181-95. PubMed ID: 11537408 [TBL] [Abstract][Full Text] [Related]
3. Life on Mars? I. The chemical environment. Banin A; Mancinelli RL Adv Space Res; 1995 Mar; 15(3):163-70. PubMed ID: 11539220 [TBL] [Abstract][Full Text] [Related]
4. Urey Prize Lecture: Planetary Evolution and the Origin of Life. McKay CP Icarus; 1991; 91():93-100. PubMed ID: 11538106 [TBL] [Abstract][Full Text] [Related]
5. Estimates of the maximum time required to originate life. Oberbeck VR; Fogleman G Orig Life Evol Biosph; 1989; 19(6):549-60. PubMed ID: 11536619 [TBL] [Abstract][Full Text] [Related]
6. Accretion of Moon and Earth and the emergence of life. Arrhenius G; Lepland A Chem Geol; 2000 Aug; 169(1-2):69-82. PubMed ID: 11543581 [TBL] [Abstract][Full Text] [Related]
7. Chemical evolution of primitive solar system bodies. Oró J; Mills T Adv Space Res; 1989; 9(2):105-20. PubMed ID: 11537358 [TBL] [Abstract][Full Text] [Related]
8. The delivery of organic matter from asteroids and comets to the early surface of Mars. Flynn GJ Earth Moon Planets; 1996; 72():469-74. PubMed ID: 11539472 [TBL] [Abstract][Full Text] [Related]
10. The search for extraterrestrial life. Sagan C Sci Am; 1994 Oct; 271(4):92-9. PubMed ID: 11536646 [TBL] [Abstract][Full Text] [Related]
11. Early martian environments: the Antarctic and other terrestrial analogs. Wharton RA; McKay CP; Mancinelli RL; Simmons GM Adv Space Res; 1989; 9(6):147-53. PubMed ID: 11537365 [TBL] [Abstract][Full Text] [Related]
12. Exobiology and future Mars missions: the search for Mars' earliest biosphere. McKay CP Adv Space Res; 1986; 6(12):269-85. PubMed ID: 11537831 [TBL] [Abstract][Full Text] [Related]
13. Cometary delivery of organic molecules to the early Earth. Chyba CF; Thomas PJ; Brookshaw L; Sagan C Science; 1990 Jul; 249():366-73. PubMed ID: 11538074 [TBL] [Abstract][Full Text] [Related]
14. Impact melting of frozen oceans on the early Earth: implications for the origin of life. Bada JL; Bigham C; Miller SL Proc Natl Acad Sci U S A; 1994 Feb; 91(4):1248-50. PubMed ID: 11539550 [TBL] [Abstract][Full Text] [Related]
15. Could organic matter have been preserved on Mars for 3.5 billion years? Kanavarioti A; Mancinelli RL Icarus; 1990 Mar; 84(1):196-202. PubMed ID: 11538399 [TBL] [Abstract][Full Text] [Related]
16. The role of cometary particle coalescence in chemical evolution. Oberbeck VR; McKay CP; Scattergood TW; Carle GC; Valentin JR Orig Life Evol Biosph; 1989; 19(1):39-55. PubMed ID: 11536611 [TBL] [Abstract][Full Text] [Related]
17. The transfer of viable microorganisms between planets. Davies PC Ciba Found Symp; 1996; 202():304-14; discussion 314-7. PubMed ID: 9243022 [TBL] [Abstract][Full Text] [Related]
18. Planetary environments and the conditions of life. Chang S Philos Trans R Soc Lond A; 1988; 325():601-10. PubMed ID: 11539065 [TBL] [Abstract][Full Text] [Related]
19. Comets and life in the Universe. Oró J; Mills T; Lazcano A Adv Space Res; 1995 Mar; 15(3):81-90. PubMed ID: 11539264 [TBL] [Abstract][Full Text] [Related]
20. Origin of the terrestrial planets and the moon. Taylor SR J R Soc West Aust; 1996 Mar; 79 Pt 1():59-65. PubMed ID: 11541325 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]