These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 11537413)

  • 1. Phytochrome induces changes in the immunodetectable level of a wall peroxidase that precede growth changes in maize seedlings.
    Kim SH; Shinkle JR; Roux SJ
    Proc Natl Acad Sci U S A; 1989 Dec; 86(24):9866-70. PubMed ID: 11537413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production and characterization of monoclonal antibodies to wall-localized peroxidases from corn seedlings.
    Kim SH; Terry ME; Hoops P; Dauwalder M; Roux SJ
    Plant Physiol; 1988; 88(4):1446-53. PubMed ID: 11537437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel beta-glucosidase from the cell wall of maize (Zea mays L.): rapid purification and partial characterization.
    Nematollahi WP; Roux SJ
    J Plant Physiol; 1999 Oct; 155(4-5):462-9. PubMed ID: 11543181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altering the axial light gradient affects photomorphogenesis in emerging seedlings of Zea mays L.
    Parks BM; Poff KL
    Plant Physiol; 1986; 81(1):75-80. PubMed ID: 11538661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased molecular mass of hemicellulosic polysaccharides is involved in growth inhibition of maize coleoptiles and mesocotyls under hypergravity conditions.
    Soga K; Harada K; Wakabayashi K; Hoson T; Kamisaka S
    J Plant Res; 1999 Sep; 112(1107):273-8. PubMed ID: 11543412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth restoration in azuki bean and maize seedlings by removal of hypergravity stimuli.
    Soga K; Wakabayashi K; Kamisaka S; Hoson T
    Adv Space Res; 2003; 31(10):2269-74. PubMed ID: 14686442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pr-specific phytochrome phosphorylation in vitro by a protein kinase present in anti-phytochrome maize immunoprecipitates.
    Biermann BJ; Pao LI; Feldman LJ
    Plant Physiol; 1994 May; 105(1):243-51. PubMed ID: 11536638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypergravity-induced increase in the apoplastic pH and its possible involvement in suppression of beta-glucan breakdown in maize seedlings.
    Soga K; Wakabayashi K; Hoson T; Kamisaka S
    Aust J Plant Physiol; 2000; 27(10):967-72. PubMed ID: 11806423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth and development in higher plants under simulated microgravity conditions on a 3-dimensional clinostat.
    Shimazu T; Yuda T; Miyamoto K; Yamashita M; Ueda J
    Adv Space Res; 2001; 27(5):995-1000. PubMed ID: 11596646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red light-regulated growth. I. Changes in the abundance of indoleacetic acid and a 22-kilodalton auxin-binding protein in the maize mesocotyl.
    Jones AM; Cochran DS; Lamerson PM; Evans ML; Cohen JD
    Plant Physiol; 1991; 97(1):352-8. PubMed ID: 11538374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytochrome is required for the occurrence of time-dependent phototropism in maize coleoptiles.
    Liu YJ; Iino M
    Plant Cell Environ; 1996 Dec; 19(12):1379-88. PubMed ID: 11539322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elongated mesocotyl1, a phytochrome-deficient mutant of maize.
    Sawers RJ; Linley PJ; Farmer PR; Hanley NP; Costich DE; Terry MJ; Brutnell TP
    Plant Physiol; 2002 Sep; 130(1):155-63. PubMed ID: 12226496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth and development, and auxin polar transport in higher plants under microgravity conditions in space: BRIC-AUX on STS-95 space experiment.
    Ueda J; Miyamoto K; Yuda T; Hoshino T; Fujii S; Mukai C; Kamigaichi S; Aizawa S; Yoshizaki I; Shimazu T; Fukui K
    J Plant Res; 1999 Dec; 112(1108):487-92. PubMed ID: 11543177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of sugar accumulation in coleoptile and mesocotyl cells by light irradiation to etiolated maize seedlings.
    Soga-Morimoto A; Soga K; Wakabayashi K; Kamisaka S; Hoson T
    J Plant Physiol; 2021 May; 260():153409. PubMed ID: 33774509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-regulated gravitropism in seedling roots of maize.
    Feldman LJ; Briggs WR
    Plant Physiol; 1987; 83(2):241-3. PubMed ID: 11539030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoinhibition of stem elongation by blue and red light: effects on hydraulic and cell wall properties.
    Kigel J; Cosgrove DJ
    Plant Physiol; 1991; 95(4):1049-56. PubMed ID: 11537486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2-DE-based proteomic analysis of protein changes associated with etiolated mesocotyl growth in Zea mays.
    Niu L; Wu Z; Liu H; Wu X; Wang W
    BMC Genomics; 2019 Oct; 20(1):758. PubMed ID: 31640549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth-limiting proteins in maize coleoptiles and the auxin-brassinosteroid hypothesis of mesocotyl elongation.
    Kutschera U; Wang ZY
    Protoplasma; 2016 Jan; 253(1):3-14. PubMed ID: 25772679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. STS-95 space experiment for plant growth and development, and auxin polar transport.
    Ueda J; Miyamoto K; Yuda T; Hoshino T; Sato K; Fujii S; Kamigaichi S; Izumi R; Ishioka N; Aizawa S; Yoshizaki I; Shimazu T; Fukui K
    Biol Sci Space; 2000 Jun; 14(2):47-57. PubMed ID: 11543421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphogenesis and cell wall changes in maize shoots under simulated microgravity conditions.
    Hoson T; Kamisaka S; Yamashita M; Masuda Y
    Biol Sci Space; 1995 Dec; 9(4):337-44. PubMed ID: 11541895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.