These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 11537420)
1. Bone geometry, structure, and mineral distribution using dual energy x-ray absorptiometry (DXA). Whalen R; Cleek T Physiologist; 1993; 36(1 Suppl):S141-2. PubMed ID: 11537420 [TBL] [Abstract][Full Text] [Related]
2. Proximal femur specimens: automated 3D trabecular bone mineral density analysis at multidetector CT--correlation with biomechanical strength measurement. Huber MB; Carballido-Gamio J; Bauer JS; Baum T; Eckstein F; Lochmüller EM; Majumdar S; Link TM Radiology; 2008 May; 247(2):472-81. PubMed ID: 18430879 [TBL] [Abstract][Full Text] [Related]
3. The significant effects of bone structure on inherent patient-specific DXA in vivo bone mineral density measurement inaccuracies. Bolotin HH Med Phys; 2004 Apr; 31(4):774-88. PubMed ID: 15124995 [TBL] [Abstract][Full Text] [Related]
4. Technical considerations of dual-energy X-ray absorptiometry-based bone mineral measurements for pediatric studies. Koo WW; Walters J; Bush AJ J Bone Miner Res; 1995 Dec; 10(12):1998-2004. PubMed ID: 8619381 [TBL] [Abstract][Full Text] [Related]
5. Dual energy x-ray absorptiometry of the forearm in preterm and term infants: evaluation of the methodology. Sievänen H; Backström MC; Kuusela AL; Ikonen RS; Mäki M Pediatr Res; 1999 Jan; 45(1):100-5. PubMed ID: 9890616 [TBL] [Abstract][Full Text] [Related]
6. In situ femoral dual-energy X-ray absorptiometry related to ash weight, bone size and density, and its relationship with mechanical failure loads of the proximal femur. Lochmüller EM; Miller P; Bürklein D; Wehr U; Rambeck W; Eckstein F Osteoporos Int; 2000; 11(4):361-7. PubMed ID: 10928227 [TBL] [Abstract][Full Text] [Related]
7. Bone mass, areal, and volumetric bone density are equally accurate, sensitive, and specific surrogates of the breaking strength of the vertebral body: an in vitro study. Tabensky AD; Williams J; DeLuca V; Briganti E; Seeman E J Bone Miner Res; 1996 Dec; 11(12):1981-8. PubMed ID: 8970902 [TBL] [Abstract][Full Text] [Related]
8. Differences in bone mineral density, bone mineral content, and bone areal size in fracturing and non-fracturing women, and their interrelationships at the spine and hip. Deng HW; Xu FH; Davies KM; Heaney R; Recker RR J Bone Miner Metab; 2002; 20(6):358-66. PubMed ID: 12434164 [TBL] [Abstract][Full Text] [Related]
9. Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children. Ward KA; Roberts SA; Adams JE; Mughal MZ Bone; 2005 Jun; 36(6):1012-8. PubMed ID: 15876561 [TBL] [Abstract][Full Text] [Related]
10. Bone acquisition in healthy children and adolescents: comparisons of dual-energy x-ray absorptiometry and computed tomography measures. Wren TA; Liu X; Pitukcheewanont P; Gilsanz V J Clin Endocrinol Metab; 2005 Apr; 90(4):1925-8. PubMed ID: 15634720 [TBL] [Abstract][Full Text] [Related]
11. In vivo whole body and appendicular bone mineral density in rats: a dual energy X-ray absorptiometry study. Karahan S; Kincaid SA; Lauten SD; Wright JC Comp Med; 2002 Apr; 52(2):143-51. PubMed ID: 12022394 [TBL] [Abstract][Full Text] [Related]
12. Precision and accuracy of a transportable dual-energy X-ray absorptiometry unit for bone mineral measurements in guinea pigs. Fink C; Cooper HJ; Huebner JL; Guilak F; Kraus VB Calcif Tissue Int; 2002 Mar; 70(3):164-9. PubMed ID: 11907713 [TBL] [Abstract][Full Text] [Related]
13. Precision and accuracy of total body bone mass and body composition measurements in the rat using x-ray-based dual photon absorptiometry. Makan S; Bayley HS; Webber CE Can J Physiol Pharmacol; 1997; 75(10-11):1257-61. PubMed ID: 9431451 [TBL] [Abstract][Full Text] [Related]
14. Extending DXA beyond bone mineral density: understanding hip structure analysis. Beck TJ Curr Osteoporos Rep; 2007 Jun; 5(2):49-55. PubMed ID: 17521505 [TBL] [Abstract][Full Text] [Related]
15. Bone densitometry. Chun KJ Semin Nucl Med; 2011 May; 41(3):220-8. PubMed ID: 21440697 [TBL] [Abstract][Full Text] [Related]
16. Anomalies in the measurement of changes in total-body bone mineral by dual-energy X-ray absorptiometry during weight change. Tothill P; Hannan WJ; Cowen S; Freeman CP J Bone Miner Res; 1997 Nov; 12(11):1908-21. PubMed ID: 9383696 [TBL] [Abstract][Full Text] [Related]
17. Prediction of bone strength in growing animals using noninvasive bone mass measurements. Koo MW; Yang KH; Begeman P; Hammami M; Koo WW Calcif Tissue Int; 2001 Apr; 68(4):230-4. PubMed ID: 11353950 [TBL] [Abstract][Full Text] [Related]
18. Radiographic absorptiometry for bone mineral measurement of the phalanges: precision and accuracy study. Yang SO; Hagiwara S; Engelke K; Dhillon MS; Guglielmi G; Bendavid EJ; Soejima O; Nelson DL; Genant HK Radiology; 1994 Sep; 192(3):857-9. PubMed ID: 8058960 [TBL] [Abstract][Full Text] [Related]
19. Bone mineral and body composition measurements: cross-calibration of pencil-beam and fan-beam dual-energy X-ray absorptiometers. Ellis KJ; Shypailo RJ J Bone Miner Res; 1998 Oct; 13(10):1613-8. PubMed ID: 9783550 [TBL] [Abstract][Full Text] [Related]
20. Precision of measurement by dual-energy X-ray absorptiometry of bone mineral density and content in rat hindlimb in vitro. Sievänen H; Kannus P; Järvinen M J Bone Miner Res; 1994 Apr; 9(4):473-8. PubMed ID: 8030435 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]