These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 11537538)

  • 21. Mantle redox evolution and the oxidation state of the Archean atmosphere.
    Kasting JF; Eggler DH; Raeburn SP
    J Geol; 1993 Mar; 101(2):245-57. PubMed ID: 11537741
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere.
    Kasting JF
    Precambrian Res; 1987; 34():205-29. PubMed ID: 11542097
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How did the evolution of oxygenic photosynthesis influence the temporal and spatial development of the microbial iron cycle on ancient Earth?
    Schad M; Konhauser KO; Sánchez-Baracaldo P; Kappler A; Bryce C
    Free Radic Biol Med; 2019 Aug; 140():154-166. PubMed ID: 31323314
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age.
    Johnston DT; Wolfe-Simon F; Pearson A; Knoll AH
    Proc Natl Acad Sci U S A; 2009 Oct; 106(40):16925-9. PubMed ID: 19805080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxygen and hydrogen peroxide in the early evolution of life on earth: in silico comparative analysis of biochemical pathways.
    Slesak I; Slesak H; Kruk J
    Astrobiology; 2012 Aug; 12(8):775-84. PubMed ID: 22970865
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans.
    Hamilton TL; Bryant DA; Macalady JL
    Environ Microbiol; 2016 Feb; 18(2):325-40. PubMed ID: 26549614
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxygen and life on earth: an anesthesiologist's views on oxygen evolution, discovery, sensing, and utilization.
    Lindahl SG
    Anesthesiology; 2008 Jul; 109(1):7-13. PubMed ID: 18580166
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bistability of atmospheric oxygen and the Great Oxidation.
    Goldblatt C; Lenton TM; Watson AJ
    Nature; 2006 Oct; 443(7112):683-6. PubMed ID: 17036001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bolide impacts and the oxidation state of carbon in the Earth's early atmosphere.
    Kasting JF
    Orig Life Evol Biosph; 1992; 20():199-231. PubMed ID: 11537523
    [TBL] [Abstract][Full Text] [Related]  

  • 30. O2 concentrations in dense primitive atmospheres: commentary.
    Kasting JF
    Planet Space Sci; 1995; 43(1-2):11-3. PubMed ID: 11538422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reflections on O
    Meadows VS
    Astrobiology; 2017 Oct; 17(10):1022-1052. PubMed ID: 28443722
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Atmospheric constraints on the evolution of metabolism.
    Walker JC
    Orig Life; 1980 Jun; 10(2):93-104. PubMed ID: 7393566
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Climatic consequences of very high carbon dioxide levels in the earth's early atmosphere.
    Kasting JF; Ackerman TP
    Science; 1986 Dec; 234():1383-5. PubMed ID: 11539665
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cryptic photosynthesis--extrasolar planetary oxygen without a surface biological signature.
    Cockell CS; Kaltenegger L; Raven JA
    Astrobiology; 2009 Sep; 9(7):623-36. PubMed ID: 19778274
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis.
    Kopp RE; Kirschvink JL; Hilburn IA; Nash CZ
    Proc Natl Acad Sci U S A; 2005 Aug; 102(32):11131-6. PubMed ID: 16061801
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early Earth.
    Kasting JF; Pollack JB
    J Atmos Chem; 1984; 1():403-28. PubMed ID: 11541984
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of Earth-like Planetary Atmospheres around M Dwarf Stars: Assessing the Atmospheres and Biospheres with a Coupled Atmosphere Biogeochemical Model.
    Gebauer S; Grenfell JL; Lehmann R; Rauer H
    Astrobiology; 2018 Jul; 18(7):856-872. PubMed ID: 30035637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iron in Precambrian rocks: implications for the global oxygen budget of the ancient Earth.
    Kump LR; Holland HD
    Geochim Cosmochim Acta; 1992 Aug; 56(8):3217-23. PubMed ID: 11537208
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzymatic Antioxidant Systems in Early Anaerobes: Theoretical Considerations.
    Ślesak I; Ślesak H; Zimak-Piekarczyk P; Rozpądek P
    Astrobiology; 2016 May; 16(5):348-58. PubMed ID: 27176812
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photochemistry of CO and H2O: analysis of laboratory experiments and applications to the prebiotic Earth's atmosphere.
    Wen JS; Pinto JP; Yung YL
    J Geophys Res; 1989 Oct; 94(D12):14957-70. PubMed ID: 11538864
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.