BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 11537636)

  • 1. Applying state diagrams to food processing and development.
    Roos Y; Karel M
    Food Technol; 1991 Dec; 45(12):66, 68-71, 107. PubMed ID: 11537636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of the pectin methylesterase catalyzed de-esterification of pectin in frozen food model systems.
    Terefe NS; Hendrickx M
    Biotechnol Prog; 2002; 18(2):221-8. PubMed ID: 11934288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The glass transition temperatures of amorphous trehalose-water mixtures and the mobility of water: an experimental and in silico study.
    Simperler A; Kornherr A; Chopra R; Jones W; Motherwell WD; Zifferer G
    Carbohydr Res; 2007 Aug; 342(11):1470-9. PubMed ID: 17511976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determining the critical relative humidity at which the glassy to rubbery transition occurs in polydextrose using an automatic water vapor sorption instrument.
    Yuan X; Carter BP; Schmidt SJ
    J Food Sci; 2011; 76(1):E78-89. PubMed ID: 21535679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal and nonthermal physiochemical processes in nanoscale films of amorphous solid water.
    Smith RS; Petrik NG; Kimmel GA; Kay BD
    Acc Chem Res; 2012 Jan; 45(1):33-42. PubMed ID: 21627126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microscopic molecular mobility of amorphous AG-041R measured by solid-state 13C NMR.
    Koga A; Yonemochi E; Machida M; Aso Y; Ushio H; Terada K
    Int J Pharm; 2004 May; 275(1-2):73-83. PubMed ID: 15081139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical stability of the amorphous state of loperamide and two fragment molecules in solid dispersions with the polymers PVP-K30 and PVP-VA64.
    Weuts I; Kempen D; Decorte A; Verreck G; Peeters J; Brewster M; Van den Mooter G
    Eur J Pharm Sci; 2005 Jun; 25(2-3):313-20. PubMed ID: 15911228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of water and solids composition in the control of glass transition and stickiness of milk powders.
    Silalai N; Roos YH
    J Food Sci; 2010 Jun; 75(5):E285-96. PubMed ID: 20629875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of β-carotene in amorphous polymer matrices. Effect of water sorption properties and physical state.
    Ramoneda XA; Ponce-Cevallos PA; del Pilar Buera M; Elizalde BE
    J Sci Food Agric; 2011 Nov; 91(14):2587-93. PubMed ID: 21681762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbohydrate polymers in amorphous states: an integrated thermodynamic and nanostructural investigation.
    Kilburn D; Claude J; Schweizer T; Alam A; Ubbink J
    Biomacromolecules; 2005; 6(2):864-79. PubMed ID: 15762653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular glasses and seed survival in the dry state.
    Buitink J; Leprince O
    C R Biol; 2008 Oct; 331(10):788-95. PubMed ID: 18926493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glass transition temperature of glucose, sucrose, and trehalose: an experimental and in silico study.
    Simperler A; Kornherr A; Chopra R; Bonnet PA; Jones W; Motherwell WD; Zifferer G
    J Phys Chem B; 2006 Oct; 110(39):19678-84. PubMed ID: 17004837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of Physical Changes in Food Products.
    Kawai K; Hagiwara T
    Adv Exp Med Biol; 2018; 1081():385-399. PubMed ID: 30288721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glass formation in plant anhydrobiotes: survival in the dry state.
    Buitink J; Leprince O
    Cryobiology; 2004 Jun; 48(3):215-28. PubMed ID: 15157771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific volume-hole volume correlations in amorphous carbohydrates: effect of temperature, molecular weight, and water content.
    Townrow S; Roussenova M; Giardiello MI; Alam A; Ubbink J
    J Phys Chem B; 2010 Feb; 114(4):1568-78. PubMed ID: 20058888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glass transition temperature and its relevance in food processing.
    Roos YH
    Annu Rev Food Sci Technol; 2010; 1():469-96. PubMed ID: 22129345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of frozen food properties during freezing using product composition.
    Boonsupthip W; Heldman DR
    J Food Sci; 2007 Jun; 72(5):E254-63. PubMed ID: 17995724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of ramping and equilibrium water vapor sorption methods to determine the critical relative humidity at which the glassy to rubbery transition occurs in polydextrose.
    Li QE; Schmidt SJ
    J Food Sci; 2011; 76(1):E149-57. PubMed ID: 21535666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of water activity, temperature, and physical state on the storage stability of Lactobacillus paracasei ssp. paracasei freeze-dried in a lactose matrix.
    Higl B; Kurtmann L; Carlsen CU; Ratjen J; Först P; Skibsted LH; Kulozik U; Risbo J
    Biotechnol Prog; 2007; 23(4):794-800. PubMed ID: 17636886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A density-driven phase transition between semiconducting and metallic polyamorphs of silicon.
    McMillan PF; Wilson M; Daisenberger D; Machon D
    Nat Mater; 2005 Sep; 4(9):680-4. PubMed ID: 16113681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.