These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 11537660)

  • 1. How effectively does a clinostat mimic the ultrastructural effects of microgravity on plant cells?
    Moore R
    Ann Bot; 1990; 65():213-6. PubMed ID: 11537660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of gravity on the formation of amyloplasts in columella cells of Zea mays L.
    Moore R; Fondren WM; Koon EC; Wang CL
    Plant Physiol; 1986; 82(3):867-8. PubMed ID: 11539093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative effectiveness of a clinostat and a slow-turning lateral vessel at mimicking the ultrastructural effects of microgravity in plant cells.
    Moore R
    Ann Bot; 1990; 66():541-9. PubMed ID: 11537663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of microgravity on cellular differentiation in root caps of Zea mays.
    Moore R; Fondren WM; McClelen CE; Wang CL
    Am J Bot; 1987 Jul; 74(7):1006-12. PubMed ID: 11539036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plastid position in Arabidopsis columella cells is similar in microgravity and on a random-positioning machine.
    Kraft TF; van Loon JJ; Kiss JZ
    Planta; 2000 Aug; 211(3):415-22. PubMed ID: 10987561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microgravity and clinorotation cause redistribution of free calcium in sweet clover columella cells.
    Hilaire E; Paulsen AQ; Brown CS; Guikema JA
    Plant Cell Physiol; 1995 Jul; 36(5):831-7. PubMed ID: 11536706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Root graviresponsiveness and columella cell structure in carotenoid-deficient seedlings of Zea mays.
    Moore R; McClelen CE
    Ann Bot; 1985; 56():83-90. PubMed ID: 11539694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A morphometric analysis of the redistribution of organelles in columella cells of horizontally-oriented roots of Zea mays.
    Moore R
    Ann Bot; 1986; 57():119-31. PubMed ID: 11540849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of peg formation in cucumber seedlings grown on clinostats and in a microgravity (space) environment.
    Link BM; Cosgrove DJ
    J Plant Res; 1999 Dec; 112(1108):507-16. PubMed ID: 11543180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of statolith mass and grouping in white clover (Trifolium repens) growth in 1-g, microgravity and on the clinostat.
    Smith JD; Todd P; Staehelin LA
    Plant J; 1997 Dec; 12(6):1361-73. PubMed ID: 11536849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular changes in wheat seedlings during orbital flight.
    Edwards BF; Gray SW
    Life Sci Space Res; 1971; 9():113-8. PubMed ID: 11942355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of amyloplast movement in cress root statocytes under different gravitational loads.
    Gaina V; Svegzdiene D; Rakleviciene D; Koryzniene D; Staneviciene R; Laurinavicius R
    Adv Space Res; 2003; 31(10):2275-81. PubMed ID: 14686443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Columella cells revisited: novel structures, novel properties, and a novel gravisensing model.
    Staehelin LA; Zheng HQ; Yoder TL; Smith JD; Todd P
    Gravit Space Biol Bull; 2000 Jun; 13(2):95-100. PubMed ID: 11543286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of microgravity on root-cap regeneration and the structure of columella cells in Zea mays.
    Moore R; McClelen CE; Fondren WM; Wang CL
    Am J Bot; 1987; 74(2):218-23. PubMed ID: 11539100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of a microgravity (space) environment on the expression of expansins from the peg and root tissues of Cucumis sativus.
    Link BM; Wagner ER; Cosgrove DJ
    Physiol Plant; 2001 Oct; 113(2):292-300. PubMed ID: 11710397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the growth and indole-3-acetic acid and abscisic acid content of Zea mays seedlings grown in microgravity.
    Schulze A; Jensen PJ; Desrosiers M; Buta JG; Bandurski RS
    Plant Physiol; 1992; 100(2):692-8. PubMed ID: 11537869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real and simulated microgravity alters cellular processes: emergence of a new environmental frontier.
    Gruener R
    News Physiol Sci; 1988 Feb; 3():37-8. PubMed ID: 11541289
    [No Abstract]   [Full Text] [Related]  

  • 18. Growth and development in higher plants under simulated microgravity conditions on a 3-dimensional clinostat.
    Shimazu T; Yuda T; Miyamoto K; Yamashita M; Ueda J
    Adv Space Res; 2001; 27(5):995-1000. PubMed ID: 11596646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early root cap development and graviresponse in white clover (Trifolium repens) grown in space and on a two-axis clinostat.
    Smith JD; Staehelin LA; Todd P
    J Plant Physiol; 1999 Oct; 155(4-5):543-50. PubMed ID: 11543182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro plant cell growth in microgravity and on clinostat.
    Laurinavicius R; Kenstaviciene P; Rupainiene O; Necitailo G
    Adv Space Res; 1994; 14(8):87-96. PubMed ID: 11537963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.