These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 11537752)

  • 1. Tektite-bearing, deep-water clastic unit at the Cretaceous-Tertiary boundary in northeastern Mexico.
    Smit J; Montanari A; Swinburne NH; Alvarez W; Hildebrand AR; Margolis SV; Claeys P; Lowrie W; Asaro F
    Geology; 1992 Feb; 20():99-103. PubMed ID: 11537752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proximal impact deposits at the Cretaceous-Tertiary boundary in the Gulf of Mexico: a restudy of DSDP Leg 77 Sites 536 and 540.
    Alvarez W; Smit J; Lowrie W; Asaro F; Margolis SV; Claeys P; Kastner M; Hildebrand AR
    Geology; 1992 Aug; 20(8):697-700. PubMed ID: 11538163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chicxulub impact predates the K-T boundary mass extinction.
    Keller G; Adatte T; Stinnesbeck W; Rebolledo-Vieyra M; Fucugauchi JU; Kramar U; Stüben D
    Proc Natl Acad Sci U S A; 2004 Mar; 101(11):3753-8. PubMed ID: 15004276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iridium profile for 10 million years across the Cretaceous-Tertiary boundary at Gubbio (Italy).
    Alvarez W; Asaro F; Montanari A
    Science; 1990 Dec; 250():1700-2. PubMed ID: 11538083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surficial geology of the Chicxulub impact crater, Yucatan, Mexico.
    Pope KO; Ocampo AC; Duller CE
    Earth Moon Planets; 1993; 63():93-104. PubMed ID: 11539441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy, volatile production, and climatic effects of the Chicxulub Cretaceous/Tertiary impact.
    Pope KO; Baines KH; Ocampo AC; Ivanov BA
    J Geophys Res; 1997 Sep; 102(E9):21645-64. PubMed ID: 11541145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts, tsunamis, and the haitian cretaceous-tertiary boundary layer.
    Maurrasse FJ; Sen G
    Science; 1991 Jun; 252(5013):1690-3. PubMed ID: 17751972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are some chondrule rims formed by impact processes? Observations and experiments.
    Bunch TE; Schultz P; Cassen P; Brownlee D; Podolak M; Lissauer J; Reynolds R; Chang S
    Icarus; 1991; 91():76-92. PubMed ID: 11538105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coastal lithofacies and biofacies associated with syndepositional dolomitization and silicification (Draken Formation, Upper Riphean, Svalbard).
    Fairchild IJ; Knoll AH; Swett K
    Precambrian Res; 1991; 53():165-97. PubMed ID: 11538645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of tektites: an alternative to terrestrial impact theory.
    Izokh EP
    Chem Erde; 1996; 56():458-74. PubMed ID: 11541098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa.
    Beukes NJ; Klein C; Kaufman AJ; Hayes JM
    Econ Geol; 1990; 85(4):663-90. PubMed ID: 11538478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noble metal abundances in an Early Archean impact deposit.
    Kyte FT; Zhou L; Lowe DR
    Geochim Cosmochim Acta; 1992; 56():1365-72. PubMed ID: 11537203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass extinctions caused by large bolide impacts.
    Alvarez LW
    Phys Today; 1987 Jul; 40(7):24-33. PubMed ID: 11542219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early precambrian asteroid impact-triggered tsunami: excavated seabed, debris flows, exotic boulders, and turbulence features associated with 3.47-2.47 Ga-old asteroid impact fallout units, Pilbara Craton, Western Australia.
    Glikson AY
    Astrobiology; 2004; 4(1):19-50. PubMed ID: 15104901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact winter and the Cretaceous/Tertiary extinctions: results of a Chicxulub asteroid impact model.
    Pope KO; Baines KH; Ocampo AC; Ivanov BA
    Earth Planet Sci Lett; 1994; 128():719-25. PubMed ID: 11539442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coeval 40Ar/39Ar Ages of 65.0 Million Years Ago from Chicxulub Crater Melt Rock and Cretaceous-Tertiary Boundary Tektites.
    Swisher CC; Grajales-Nishimura JM; Montanari A; Margolis SV; Claeys P; Alvarez W; Renne P; Cedillo-Pardoa E; Maurrasse FJ; Curtis GH; Smit J; McWilliams MO
    Science; 1992 Aug; 257(5072):954-8. PubMed ID: 17789640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-body impact and extinction in the Phanerozoic.
    Raup DM
    Paleobiology; 1992; 18(1):80-8. PubMed ID: 11537745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of groundwater conduits in limestones with gravity surveys: data from the area of the Chicxulub Impact crater, Yucatan Peninsula, Mexico.
    Kinsland GL; Hurtado M; Pope KO
    Geophys Res Lett; 2000 Apr; 27(8):1223-6. PubMed ID: 11543493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inquiring into indicators and origin of catastrophic events at stratigraphic boundaries.
    Zhang Q; Xu D
    J Southeast Asian Earth Sci; 1996; 13(3-5):373-8. PubMed ID: 12747349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stromatolites of the Mescal Limestone (Apache Group, middle Proterozoic, central Arizona): taxonomy, biostratigraphy, and paleoenvironments.
    Bertrand-Sarfati J; Awramik SM
    Geol Soc Am Bull; 1992 Sep; 104():1138-55. PubMed ID: 11538391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.