These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 11537815)

  • 1. Survey of the vestibulum, and behavior of Xenopus laevis larvae developed during a 7-days space flight.
    Briegleb W; Neubert J; Schatz A; Klein T; Kruse B
    Adv Space Res; 1986; 6(12):151-6. PubMed ID: 11537815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The response of structure and function of the gravireceptor in a vertebrate to near weightlessness.
    Neubert J; Briegleb W; Schatz A; Hertwig I; Kruse B
    Acta Astronaut; 1988 Feb; 17(2):257-62. PubMed ID: 11542431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early development in aquatic vertebrates in near weightlessness during the D-2 Mission STATEX project.
    Neubert J; Schatz A; Briegleb W; Bromeis B; Linke-Hommes A; Rahmann H; Slenzka K; Horn E
    Adv Space Res; 1996; 17(6-7):275-9. PubMed ID: 11538629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The reaction of Xenopus laevis Daudin (South African toad) to linear accelerations.
    Neubert J; Schatz A; Bromeis B; Briegleb W
    Adv Space Res; 1994; 14(8):299-303. PubMed ID: 11537929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulative development of Xenopus laevis in microgravity.
    Black S; Larkin K; Jacqmotte N; Wassersug R; Pronych S; Souza K
    Adv Space Res; 1996; 17(6-7):209-17. PubMed ID: 11538618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Vestibular apparatus study of the toad, Xenopus laevis, and rats under prolonged weightlessness].
    Vinnikov IaA; Lychakov DV; Pal'mbakh LR; Govardovskiĭ VI; Adanina VO
    Zh Evol Biokhim Fiziol; 1980; 16(6):574-9. PubMed ID: 6970471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light microscopic analysis of the gravireceptor in Xenopus larvae developed in hypogravity.
    Briegleb W; Neubert J; Schatz A; Kruse B
    Adv Space Res; 1989; 9(11):241-4. PubMed ID: 11537338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optomotor behaviour in Xenopus laevis tadpoles as a measure of the effect of gravity on visual and vestibular neural integration.
    Pronych SP; Souza KA; Neff AW; Wassersug RJ
    J Exp Biol; 1996 Dec; 199(Pt 12):2689-701. PubMed ID: 9110955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of space flight on Xenopus laevis larval development.
    Snetkova E; Chelnaya N; Serova L; Saveliev S; Cherdanzova E; Pronych S; Wassersug R
    J Exp Zool; 1995 Sep; 273(1):21-32. PubMed ID: 7561721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Structure of the vestibular apparatus and ionic composition of the body of Xenopus laevis larvae as affected by weightlessness].
    Lychakov DV; Lavrova EA
    Kosm Biol Aviakosm Med; 1985; 19(3):48-52. PubMed ID: 3875754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The basic mechanics of ascent and descent by anuran larvae (Xenopus laevis).
    Wassersug R
    Copeia; 1992; 3():890-4. PubMed ID: 11542225
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of gravity on early development.
    Neubert J; Schatz A; Bromeis B; Linke-Hommes A
    Adv Space Res; 1998; 22(2):265-71. PubMed ID: 11541404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xenopus laevis embryos can establish their spatial bilateral symmetrical body pattern without gravity.
    Ubbels GA; Reijnen M; Meijerink J; Narraway J
    Adv Space Res; 1994; 14(8):257-69. PubMed ID: 11537925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gravity-related critical periods in vestibular and tail development of Xenopus laevis.
    Horn ER; Gabriel M
    J Exp Zool A Ecol Genet Physiol; 2011 Nov; 315(9):505-11. PubMed ID: 21866581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of long-term altered gravity on the swimming performance of developing cichlid fish: including results from the 2nd German Spacelab Mission D-2.
    Rahmann H; Hilbig R; Flemming J; Slenzka K
    Adv Space Res; 1996; 17(6-7):121-4. PubMed ID: 11538604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swimming kinematics and respiratory behaviour of Xenopus laevis larvae raised in altered gravity.
    Fejtek M; Souza K; Neff A; Wassersug R
    J Exp Biol; 1998 Jun; 201(Pt 12):1917-26. PubMed ID: 9722430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological investigations on the orbital station "Salyut-5".
    Vaulina EN; Palmbakh LR; Antipov VV; Anikeeva ID; Kostina LN; Zharikova GG; Kasatkina TB
    Life Sci Space Res; 1979; 17():241-6. PubMed ID: 12008713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered gravity affects ventral root activity during fictive swimming and the static vestibuloocular reflex in young tadpoles (Xenopus laevis).
    Böser S; Dournon C; Gualandris-Parisot L; Horn E
    Arch Ital Biol; 2008 Mar; 146(1):1-20. PubMed ID: 18666444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The minimum duration of microgravity experience during space flight which affects the development of the roll induced vestibulo-ocular reflex in an amphibian (Xenopus laevis).
    Sebastian C; Horn E
    Neurosci Lett; 1998 Sep; 253(3):171-4. PubMed ID: 9792238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histological studies on the vestibular organ of frog embryos and larvae after simulated weightlessness.
    Briegleb W
    Life Sci Space Res; 1974; 12():177-80. PubMed ID: 11911145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.