BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 11537858)

  • 1. The effects of growth temperature on the methyl sterol and phospholipid fatty acid composition of Methylococcus capsulatus (Bath).
    Jahnke LL
    FEMS Microbiol Lett; 1992 Jun; 72(3):209-12. PubMed ID: 11537858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methyl sterol and cyclopropane fatty acid composition of Methylococcus capsulatus grown at low oxygen tensions.
    Jahnke LL; Nichols PD
    J Bacteriol; 1986 Jul; 167(1):238-42. PubMed ID: 3087955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presence of methyl sterol and bacteriohopanepolyol in an outer-membrane preparation from Methylococcus capsulatus (Bath).
    Jahnke LL; Stan-Lotter H; Kato K; Hochstein LI
    J Gen Microbiol; 1992 Aug; 138(8):1759-66. PubMed ID: 11538386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for the synthesis of the multi-positional isomers of monounsaturated fatty acid in Methylococcus capsusatus by the anaerobic pathway.
    Jahnke LL; Diggs K
    FEMS Microbiol Lett; 1989; 58():183-8. PubMed ID: 11542184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon isotopic fractionation in lipids from methanotrophic bacteria: relevance for interpretation of the geochemical record of biomarkers.
    Summons RE; Jahnke LL; Roksandic Z
    Geochim Cosmochim Acta; 1994; 58(13):2853-63. PubMed ID: 11540111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of temperature acclimation on membrane sterols and phospholipids of Neurospora crassa.
    Aaronson LR; Johnston AM; Martin CE
    Biochim Biophys Acta; 1982 Nov; 713(2):456-62. PubMed ID: 6217843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in plasma membrane fluidity of Bryonia dioica internodes during thigmomorphogenesis.
    Mathieu C; Motta C; Hartmann MA; Thonat C; Boyer N
    Biochim Biophys Acta; 1995 May; 1235(2):249-55. PubMed ID: 7756332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of methanotrophic lipid biomarkers in cold-seep mussel gills: chemical and isotopic analysis.
    Jahnke LL; Summons RE; Dowling LM; Zahiralis KD
    Appl Environ Microbiol; 1995 Feb; 61(2):576-82. PubMed ID: 11536707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phospholipid composition of methane-utilizing bacteria.
    Makula RA
    J Bacteriol; 1978 Jun; 134(3):771-7. PubMed ID: 96101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid content and fatty acid composition of green algae Scenedesmus obliquus grown in a constant cell density apparatus.
    Choi KJ; Nakhost Z; Barzana E; Karel M
    Food Biotechnol; 1987; 1(1):117-28. PubMed ID: 11539709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in lipid fluidity and fatty acid composition with altered culture temperature in Tetrahymena pyriformis-NT1.
    Connolly JG; Brown ID; Lee AG; Kerkut GA
    Comp Biochem Physiol A Comp Physiol; 1985; 81(2):287-92. PubMed ID: 2864170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma membrane composition of Debaryomyces hansenii adapts to changes in pH and external salinity.
    Turk M; Montiel V; Žigon D; Plemenitaš A; Ramos J
    Microbiology (Reading); 2007 Oct; 153(Pt 10):3586-3592. PubMed ID: 17906155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Dictyostelium discoideum plasma membrane fluidity by electron spin resonance.
    Herring FG; Weeks G
    Biochim Biophys Acta; 1979 Mar; 552(1):66-77. PubMed ID: 219892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of temperature acclimation on Neurospora phospholipids. Fatty acid desaturation appears to be a key element in modifying phospholipid fluid properties.
    Martin CE; Siegel D; Aaronson LR
    Biochim Biophys Acta; 1981 Sep; 665(3):399-407. PubMed ID: 6457645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polar and neutral lipid composition in the pelagic tunicate Pyrosoma atlanticum.
    Mayzaud P; Boutoute M; Perissinotto R; Nichols P
    Lipids; 2007 Jul; 42(7):647-57. PubMed ID: 17541797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationships between growth temperature, fatty acid composition and the physical state and fluidity of membrane lipids in Yersinia enterocolitica.
    Abbas CA; Card GL
    Biochim Biophys Acta; 1980 Nov; 602(3):469-76. PubMed ID: 7437420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in membrane lipid composition during saline growth of the fresh water cyanobacterium Synechococcus 6311.
    Huflejt ME; Tremolieres A; Pineau B; Lang JK; Hatheway J; Packer L
    Plant Physiol; 1990; 94(4):1512-21. PubMed ID: 11537468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of transbilayer distribution of a fluorescent sterol in tumor cell plasma membranes.
    Kier AB; Sweet WD; Cowlen MS; Schroeder F
    Biochim Biophys Acta; 1986 Oct; 861(2):287-301. PubMed ID: 3756161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal regulation of the fatty acid composition of lipopolysaccharides and phospholipids of Proteus mirabilis.
    Rottem S; Markowitz O; Razin S
    Eur J Biochem; 1978 Apr; 85(2):445-50. PubMed ID: 206438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of polyunsaturated fatty acids and lipid peroxidation in LM fibroblast plasma membrane transbilayer structure.
    Schroeder F; Kier AB; Sweet WD
    Arch Biochem Biophys; 1990 Jan; 276(1):55-64. PubMed ID: 2297230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.