These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 11537904)

  • 41. Possible mechanisms of plant cell wall changes at microgravity.
    Nedukha EM
    Adv Space Res; 1996; 17(6-7):37-45. PubMed ID: 11538635
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The biophysical limitations in physiological transport and exchange in plants grown in microgravity.
    Porterfield DM
    J Plant Growth Regul; 2002 Jun; 21(2):177-90. PubMed ID: 12024222
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative effectiveness of a clinostat and a slow-turning lateral vessel at mimicking the ultrastructural effects of microgravity in plant cells.
    Moore R
    Ann Bot; 1990; 66():541-9. PubMed ID: 11537663
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Calcium balance in pea root statocytes under both clinorotation and Ca2+ channel blockers' influence.
    Belyavskaya NA; Tsarik NP
    Adv Space Res; 1998; 21(8-9):1225-8. PubMed ID: 11541376
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The tropic response of plant roots to oxygen: oxytropism in Pisum sativum L.
    Porterfield DM; Musgrave ME
    Planta; 1998 Sep; 206(1):1-6. PubMed ID: 11536884
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A spaceflight experiment for the study of gravimorphogenesis and hydrotropism in cucumber seedlings.
    Takahashi H; Mizuno H; Kamada M; Fujii N; Higashitani A; Kamigaichi S; Aizawa S; Mukai C; Shimazu T; Fukui K; Yamashita M
    J Plant Res; 1999 Dec; 112(1108):497-505. PubMed ID: 11543179
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Growth and development in higher plants under simulated microgravity conditions on a 3-dimensional clinostat.
    Shimazu T; Yuda T; Miyamoto K; Yamashita M; Ueda J
    Adv Space Res; 2001; 27(5):995-1000. PubMed ID: 11596646
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Growth and development, and auxin polar transport in higher plants under microgravity conditions in space: BRIC-AUX on STS-95 space experiment.
    Ueda J; Miyamoto K; Yuda T; Hoshino T; Fujii S; Mukai C; Kamigaichi S; Aizawa S; Yoshizaki I; Shimazu T; Fukui K
    J Plant Res; 1999 Dec; 112(1108):487-92. PubMed ID: 11543177
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cell-wall architecture and lignin composition of wheat developed in a microgravity environment.
    Levine LH; Heyenga AG; Levine HG; Choi J; Davin LB; Krikorian AD; Lewis NG
    Phytochemistry; 2001 Jul; 57(6):835-46. PubMed ID: 11423135
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Effect of weightlessness on the DNA replicative function of rat hepatocytes].
    Komolova GS; Zakaznov AV; Makeeva VF
    Kosm Biol Aviakosm Med; 1987; 21(5):31-4. PubMed ID: 3695334
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microgravity cultivation of cells and tissues.
    Freed LE; Pellis N; Searby N; de Luis J; Preda C; Bordonaro J; Vunjak-Novakovic G
    Gravit Space Biol Bull; 1999 May; 12(2):57-66. PubMed ID: 11541784
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Graviresponse and its regulation from the aspect of molecular levels in higher plants: growth and development, and auxin polar transport in etiolated pea seedlings under microgravity.
    Miyamoto K; Hoshino T; Hitotsubashi R; Tanimoto E; Ueda J
    Biol Sci Space; 2003 Oct; 17(3):234-5. PubMed ID: 14676393
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Effect of weightlessness and artificial gravitation on morphological manifestations of the adrenal cortex reaction in rats after space flight on board the biosatellite "Cosmos-936"].
    Savina EA; Alekseev EI; Kuz'mina ZF
    Arkh Anat Gistol Embriol; 1980 Oct; 79(10):25-30. PubMed ID: 7447725
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of clinostating on photosynthetic apparatus of pea plants.
    Kochubey SM; Volovik OI; Porubleva LV; Shevchenko VV
    Adv Space Res; 1998; 21(8-9):1127-30. PubMed ID: 11541360
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-gradient magnetic fields and starch metabolism: results from a space experiment.
    Hasenstein KH; Park MR; John SP; Ajala C
    Sci Rep; 2022 Oct; 12(1):18256. PubMed ID: 36309570
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gravity as an obligatory factor in normal higher plant growth and development.
    Merkys AJ; Laurinavichius RS; Rupainene OY; Shvegzhdene DV; Yaroshius AV
    Adv Space Res; 1981; 1(14):109-16. PubMed ID: 11541699
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Research on the Kosmos biosatellites].
    Il'in EA
    Kosm Biol Aviakosm Med; 1984; 18(1):57-66. PubMed ID: 6700188
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The role of calcium ions in cytological effects of hypogravity.
    Kordyum EL; Belyavskaya NA; Nedukha EM; Palladina TA; Tarasenko VA
    Adv Space Res; 1984; 4(12):23-6. PubMed ID: 11537779
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microgravity and clinorotation cause redistribution of free calcium in sweet clover columella cells.
    Hilaire E; Paulsen AQ; Brown CS; Guikema JA
    Plant Cell Physiol; 1995 Jul; 36(5):831-7. PubMed ID: 11536706
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microarray profile of gene expression in etiolated Pisum sativum seedlings grown under microgravity conditions in space: Relevance to the International Space Station experiment "Auxin Transport".
    Kamada M; Oka M; Miyamoto K; Uheda E; Yamazaki C; Shimazu T; Sano H; Kasahara H; Suzuki T; Higashibata A; Ueda J
    Life Sci Space Res (Amst); 2020 Aug; 26():55-61. PubMed ID: 32718687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.