These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 11538006)

  • 1. Developmental changes in cell and tissue water relations parameters in storage parenchyma of sugarcane.
    Moore PH; Cosgrove DJ
    Plant Physiol; 1991; 96(3):794-801. PubMed ID: 11538006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue-specific transcriptome analysis within the maturing sugarcane stalk reveals spatial regulation in the expression of cellulose synthase and sucrose transporter gene families.
    Casu RE; Rae AL; Nielsen JM; Perroux JM; Bonnett GD; Manners JM
    Plant Mol Biol; 2015 Dec; 89(6):607-28. PubMed ID: 26456093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell turgor pressure regulation and turgor pressure-mediated transport processes.
    Zimmermann U
    Symp Soc Exp Biol; 1977; 31():117-54. PubMed ID: 756623
    [No Abstract]   [Full Text] [Related]  

  • 4. Water uptake by growing cells: an assessment of the controlling roles of wall relaxation, solute uptake, and hydraulic conductance.
    Cosgrove DJ
    Int J Plant Sci; 1993; 154(1):10-21. PubMed ID: 11537965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure probe study of the water relations of Phycomyces blakesleeanus sporangiophores.
    Cosgrove DJ; Ortega JK; Shropshire W
    Biophys J; 1987 Mar; 51(3):413-23. PubMed ID: 11536570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles.
    Wu HI; Spence RD; Sharpe PJ; Goeschl JD
    Plant Cell Environ; 1985 Nov; 8(8):563-70. PubMed ID: 11541279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A revised and unified pressure-clamp/relaxation theory for studying plant cell water relations with pressure probes: in-situ determination of cell volume for calculation of volumetric elastic modulus and hydraulic conductivity.
    Knipfer T; Fei J; Gambetta GA; Shackel KA; Matthews MA
    J Theor Biol; 2014 Oct; 359():80-91. PubMed ID: 24907672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water transport in the midrib tissue of maize leaves : direct measurement of the propagation of changes in cell turgor across a plant tissue.
    Westgate ME; Steudle E
    Plant Physiol; 1985 May; 78(1):183-91. PubMed ID: 16664195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light and turgor affect the water permeability (aquaporins) of parenchyma cells in the midrib of leaves of Zea mays.
    Kim YX; Steudle E
    J Exp Bot; 2007; 58(15-16):4119-29. PubMed ID: 18065766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The biophysics of differential growth.
    Tomos AD; Malone M; Pritchard J
    Environ Exp Bot; 1989 Jan; 29(1):7-23. PubMed ID: 11541037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of the volumetric elastic modulus and membrane hydraulic conductivity of willow sieve tubes.
    Wright JP; Fisher DB
    Plant Physiol; 1983 Dec; 73(4):1042-7. PubMed ID: 16663326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical and experimental exclusion of errors in the determination of the elasticity and water transport parameters of plant cells by the pressure probe technique.
    Zimmermann U; Hüsken D
    Plant Physiol; 1979 Jul; 64(1):18-24. PubMed ID: 16660908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-relation Parameters of Individual Mesophyll Cells of the Crassulacean Acid Metabolism Plant Kalanchoë daigremontiana.
    Steudle E
    Plant Physiol; 1980 Dec; 66(6):1155-63. PubMed ID: 16661595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant cell growth in tissue.
    Ortega JK
    Plant Physiol; 2010 Nov; 154(3):1244-53. PubMed ID: 20739609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wall relaxation and the driving forces for cell expansive growth.
    Cosgrove DJ
    Plant Physiol; 1987; 84(3):561-4. PubMed ID: 11539680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water transport in barley roots : Measurements of root pressure and hydraulic conductivity of roots in parallel with turgor and hydraulic conductivity of root cells.
    Steudle E; Jeschke WD
    Planta; 1983 May; 158(3):237-48. PubMed ID: 24264613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water transport through plant tissue: the apoplasm and symplasm pathways.
    Molz FJ
    J Theor Biol; 1976 Jul; 59(2):277-92. PubMed ID: 957691
    [No Abstract]   [Full Text] [Related]  

  • 18. Hyperelastic models for hydration of cellular tissue.
    van der Sman RG
    Soft Matter; 2015 Oct; 11(38):7579-91. PubMed ID: 26283077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biophysical control of plant cell growth.
    Cosgrove D
    Annu Rev Plant Physiol; 1986; 37():377-405. PubMed ID: 11539701
    [No Abstract]   [Full Text] [Related]  

  • 20. Expression analysis of genes associated with sucrose accumulation in sugarcane (Saccharum spp. hybrids) varieties differing in content and time of peak sucrose storage.
    Chandra A; Verma PK; Islam MN; Grisham MP; Jain R; Sharma A; Roopendra K; Singh K; Singh P; Verma I; Solomon S
    Plant Biol (Stuttg); 2015 May; 17(3):608-17. PubMed ID: 25311688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.