These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 11538028)

  • 1. Neuritogenesis: a model for space radiation effects on the central nervous system.
    Vazquez ME; Broglio TM; Worgul BV; Benton EV
    Adv Space Res; 1994; 14(10):467-74. PubMed ID: 11538028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ALTEA: anomalous long term effects in astronauts. A probe on the influence of cosmic radiation and microgravity on the central nervous system during long flights.
    Narici L; Bidoli V; Casolino M; De Pascale MP; Furano G; Morselli A; Picozza P; Reali E; Sparvoli R; Licoccia S; Romagnoli P; Traversa E; Sannita WG; Loizzo A; Galper A; Khodarovich A; Korotkov MG; Popov A; Vavilov N; Avdeev S; Salnitskii VP; Shevchenko OI; Petrov VP; Trukhanov KA; Boezio M; Bonvicini W; Vacchi A; Zampa N; Battiston R; Mazzenga G; Ricci M; Spillantini P; Castellini G; Carlson P; Fuglesang C
    Adv Space Res; 2003; 31(1):141-6. PubMed ID: 12577991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro neurotoxic effects of 1 GeV/n iron particles assessed in retinal explants.
    Vazquez ME; Kirk E
    Adv Space Res; 2000; 25(10):2041-9. PubMed ID: 11542855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined Exposure to Simulated Microgravity and Acute or Chronic Radiation Reduces Neuronal Network Integrity and Survival.
    Pani G; Verslegers M; Quintens R; Samari N; de Saint-Georges L; van Oostveldt P; Baatout S; Benotmane MA
    PLoS One; 2016; 11(5):e0155260. PubMed ID: 27203085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurobiological problems in long-term deep space flights.
    Vazquez ME
    Adv Space Res; 1998; 22(2):171-83. PubMed ID: 11541395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting cancer rates in astronauts from animal carcinogenesis studies and cellular markers.
    Williams JR; Zhang Y; Zhou H; Osman M; Cha D; Kavet R; Cuccinotta F; Dicello JF; Dillehay LE
    Mutat Res; 1999 Dec; 430(2):255-69. PubMed ID: 10631340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of human epithelial cell systems for radiation risk assessment.
    Yang CH; Craise LM
    Adv Space Res; 1994; 14(10):115-20. PubMed ID: 11538024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of the new biology on radiation risks in space.
    Dicello JF
    Health Phys; 2003 Jul; 85(1):94-102. PubMed ID: 12861962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opportunities for nutritional amelioration of radiation-induced cellular damage.
    Turner ND; Braby LA; Ford J; Lupton JR
    Nutrition; 2002 Oct; 18(10):904-12. PubMed ID: 12361786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The NASA Space Radiation Health Program.
    Schimmerling W; Sulzman FM
    Adv Space Res; 1994 Oct; 14(10):133-7. PubMed ID: 11539944
    [No Abstract]   [Full Text] [Related]  

  • 11. Cellular changes in microgravity and the design of space radiation experiments.
    Morrison DR
    Adv Space Res; 1994 Oct; 14(10):1005-19. PubMed ID: 11539937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation protection issues in galactic cosmic ray risk assessment.
    Sinclair WK
    Adv Space Res; 1994; 14(10):879-84. PubMed ID: 11538038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deoxyribonucleoprotein structure and radiation injury: cellular radiosensitivity is determined by LET infinity -dependent DNA damage in hydrated deoxyribonucleoproteins and the extent of its repair.
    Lett JT; Peters EL
    Adv Space Res; 1992; 12(2-3):51-8. PubMed ID: 11537046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dose rate and repair effects on cell damage in Earth orbit.
    Cucinotta FA; Wilson JW; Shinn JL; Atwell W; Fong M
    Adv Space Res; 1994; 14(10):121-4. PubMed ID: 11538025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental models for cellular radiation targets: LET, RBE and radioprotectors.
    Lett JT
    Adv Space Res; 1996; 18(1-2):31-40. PubMed ID: 11538977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-track effects and new directions in GCR risk assessment.
    Curtis SB
    Adv Space Res; 1994; 14(10):885-94. PubMed ID: 11538039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Space Radiation Biology for "Living in Space".
    Furukawa S; Nagamatsu A; Nenoi M; Fujimori A; Kakinuma S; Katsube T; Wang B; Tsuruoka C; Shirai T; Nakamura AJ; Sakaue-Sawano A; Miyawaki A; Harada H; Kobayashi M; Kobayashi J; Kunieda T; Funayama T; Suzuki M; Miyamoto T; Hidema J; Yoshida Y; Takahashi A
    Biomed Res Int; 2020; 2020():4703286. PubMed ID: 32337251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological effects of cosmic radiation: deterministic and stochastic.
    Blakely EA
    Health Phys; 2000 Nov; 79(5):495-506. PubMed ID: 11045523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiation hazards on space missions outside the magnetosphere.
    Letaw JR; Silberberg R; Tsao CH
    Adv Space Res; 1989; 9(10):285-91. PubMed ID: 11537305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Space radiation does not induce a significant increase of intrachromosomal exchanges in astronauts' lymphocytes.
    Horstmann M; Durante M; Johannes C; Pieper R; Obe G
    Radiat Environ Biophys; 2005 Dec; 44(3):219-24. PubMed ID: 16217644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.