These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 11538097)

  • 1. Duration of liquid water habitats on early Mars.
    McKay CP; Davis WL
    Icarus; 1991; 90():214-21. PubMed ID: 11538097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The case for a wet, warm climate on early Mars.
    Pollack JB; Kasting JF; Richardson SM; Poliakoff K
    Icarus; 1987; 71():203-24. PubMed ID: 11539035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. History of water on Mars: a biological perspective.
    McKay CP; Friedmann EI; Wharton RA; Davies WL; Friedman EI
    Adv Space Res; 1992; 12(4):231-8. PubMed ID: 11538143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paleolakes on Mars.
    Wharton RA; Crosby JM; McKay CP; Rice JW
    J Paleolimnol; 1995; 13():267-83. PubMed ID: 11539841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are there carbonate deposits in the Valles Marineris, Mars?
    McKay CP; Nedell SS
    Icarus; 1988; 73():142-8. PubMed ID: 11538222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CO2 condensation and the climate of early Mars.
    Kasting JF
    Icarus; 1991; 94():1-13. PubMed ID: 11538088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The early Mars climate question heats up.
    Kasting JF
    Science; 1997 Nov; 278(5341):1245. PubMed ID: 9411751
    [No Abstract]   [Full Text] [Related]  

  • 8. A numerical simulation of climate changes during the obliquity cycle on Mars.
    François LM; Walker JC; Kuhn WR
    J Geophys Res; 1990 Aug; 95(B9):14761-78. PubMed ID: 11538477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model for the evolution of CO2 on Mars.
    Haberle RM; Tyler D; McKay CP; Davis WL
    Icarus; 1994 May; 109(1):102-20. PubMed ID: 11539135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of atmosphere from Mars due to solar wind-induced sputtering.
    Kass DM; Yung YL
    Science; 1995 May; 268(5211):697-9. PubMed ID: 7732377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of carbon dioxide clouds on early martian climate.
    Mischna MA; Kasting JF; Pavlov A; Freedman R
    Icarus; 2000 Jun; 145(2):546-54. PubMed ID: 11543507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exobiology and future Mars missions: the search for Mars' earliest biosphere.
    McKay CP
    Adv Space Res; 1986; 6(12):269-85. PubMed ID: 11537831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars.
    Boston PJ; Ivanov MV; McKay CP
    Icarus; 1992; 95():300-8. PubMed ID: 11539823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A preliminary comparison of two perennially ice-covered lakes in Antarctica: analogs of past Martian lacustrine environments.
    Andersen DT; Doran P; Bolshiyanov D; Rice J; Galchenko V; Cherych N; Wharton RA; McKay CP; Meyer M; Garshnek V
    Adv Space Res; 1995 Mar; 15(3):199-202. PubMed ID: 11539225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mars: water, climate, and life.
    Jakosky BM
    Science; 1999 Jan; 283(5402):648-9. PubMed ID: 9988657
    [No Abstract]   [Full Text] [Related]  

  • 16. Early martian environments: the Antarctic and other terrestrial analogs.
    Wharton RA; McKay CP; Mancinelli RL; Simmons GM
    Adv Space Res; 1989; 9(6):147-53. PubMed ID: 11537365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Habitable zones around main sequence stars.
    Kasting JF; Whitmire DP; Reynolds RT
    Icarus; 1993 Jan; 101(1):108-28. PubMed ID: 11536936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How climate evolved on the terrestrial planets.
    Kasting JF; Toon OB; Pollack JB
    Sci Am; 1988 Feb; 256(2):90-7. PubMed ID: 11538470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Earth analogs for Martian life. Microbes in evaporites, a new model system for life on Mars.
    Rothschild LJ
    Icarus; 1990; 88():246-60. PubMed ID: 11538366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen supersaturation in ice-covered Antarctic lakes: biological versus physical contributions.
    Craig H; Wharton RA; McKay CP
    Science; 1992 Jan; 255():318-21. PubMed ID: 11539819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.