These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11538139)

  • 41. Molecular complexes of amino acids with porphyrins as possible precursors of pigment-protein systems.
    Kolesnikov MP; Voronova NI; Egorov IA
    Orig Life; 1981 Sep; 11(3):223-31. PubMed ID: 7301346
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mimicry and functions of photosynthetic reaction centers.
    Fukuzumi S; Lee YM; Nam W
    Biochem Soc Trans; 2018 Oct; 46(5):1279-1288. PubMed ID: 30301843
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chemical models for aspects of the photosynthetic reaction centre: synthesis and photophysical properties of tris- and tetrakis-porphyrins that resemble the arrangement of chromophores in the natural system.
    Crossley MJ; Sintic PJ; Hutchison JA; Ghiggino KP
    Org Biomol Chem; 2005 Mar; 3(5):852-65. PubMed ID: 15731872
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Accumulation of protoporphyrin-IX by the chlorophyll-less y-y mutant of Chlamydomonas reinhardtii.
    Nicholson-Guthrie CS; Guthrie GD
    Arch Biochem Biophys; 1987 Feb; 252(2):570-3. PubMed ID: 3813551
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evolution of reaction center mimics to systems capable of generating solar fuel.
    Sherman BD; Vaughn MD; Bergkamp JJ; Gust D; Moore AL; Moore TA
    Photosynth Res; 2014 May; 120(1-2):59-70. PubMed ID: 23397434
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A supramolecular photosynthetic triad of slipped cofacial porphyrin dimer, ferrocene, and fullerene.
    Nakagawa H; Ogawa K; Satake A; Kobuke Y
    Chem Commun (Camb); 2006 Apr; (14):1560-2. PubMed ID: 16575460
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Solar urticaria and disturbed metabolism of porphyrins.
    Beljaards RC; Bruynzeel DP
    Dermatologica; 1991; 182(4):231-2. PubMed ID: 1884858
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chlorophyll modifications and their spectral extension in oxygenic photosynthesis.
    Chen M
    Annu Rev Biochem; 2014; 83():317-40. PubMed ID: 24635479
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Energy transfer followed by electron transfer in a supramolecular triad composed of boron dipyrrin, zinc porphyrin, and fullerene: a model for the photosynthetic antenna-reaction center complex.
    D'Souza F; Smith PM; Zandler ME; McCarty AL; Itou M; Araki Y; Ito O
    J Am Chem Soc; 2004 Jun; 126(25):7898-907. PubMed ID: 15212538
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evolution of uphill electron transfer.
    Krasnovsky AA
    Biosystems; 1981; 14(1):81-7. PubMed ID: 7272472
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spectral expansion and antenna reduction can enhance photosynthesis for energy production.
    Blankenship RE; Chen M
    Curr Opin Chem Biol; 2013 Jun; 17(3):457-61. PubMed ID: 23602382
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Energy and photoinduced electron transfer in a wheel-shaped artificial photosynthetic antenna-reaction center complex.
    Kodis G; Terazono Y; Liddell PA; Andréasson J; Garg V; Hambourger M; Moore TA; Moore AL; Gust D
    J Am Chem Soc; 2006 Feb; 128(6):1818-27. PubMed ID: 16464080
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of bioinspired artificial photosynthetic systems.
    Fukuzumi S
    Phys Chem Chem Phys; 2008 May; 10(17):2283-97. PubMed ID: 18414719
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mimicking the role of the antenna in photosynthetic photoprotection.
    Terazono Y; Kodis G; Bhushan K; Zaks J; Madden C; Moore AL; Moore TA; Fleming GR; Gust D
    J Am Chem Soc; 2011 Mar; 133(9):2916-22. PubMed ID: 21314185
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Effects of nitrogen application and elevated atmospheric CO2 on electron transport and energy partitioning in flag leaf photosynthesis of wheat].
    Zhang XC; Yu XF; Ma YF
    Ying Yong Sheng Tai Xue Bao; 2011 Mar; 22(3):673-80. PubMed ID: 21657023
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular mechanisms of light stress of photosynthesis.
    Vass I; Cser K; Cheregi O
    Ann N Y Acad Sci; 2007 Oct; 1113():114-22. PubMed ID: 17513459
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Localization of Mg-protoporphyrin IX monomethyl ester in chloroplast submembrane particles of barley].
    Shlyk AA; Fradkin LI; Shalygo NV; Averina NG
    Biofizika; 1981; 26(6):1102-4. PubMed ID: 7317499
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evolution of photosynthetic reaction centers and light harvesting chlorophyll proteins.
    Meyer TE
    Biosystems; 1994; 33(3):167-75. PubMed ID: 7888608
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Native state, energetic interaction of chlorophyll precursors and intraplastid location of S-adenosyl-L-methionine: Mg-protoporphyrin IX methyltransferase in etiolated leaves.
    Averina N; Rassadina V; Leonid F
    Indian J Exp Biol; 2002 Feb; 40(2):192-201. PubMed ID: 12622183
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Systemic suppression of the contact hypersensitivity by the products of protoporphyrin IX photooxidation.
    Kyagova AA; Mansurova GV; Kozir LA; Ponomarev GV; Pavlov VY; Konstantinov IO; Potapenko AY
    Photochem Photobiol; 2005; 81(6):1380-5. PubMed ID: 16080780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.