These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 11538248)

  • 1. Adaptation to restraint in the rat.
    Popovic V
    Physiologist; 1988; 31(1 Suppl):S65-6. PubMed ID: 11538248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repeated handling, restraint, or chronic crowding impair the hypothalamic-pituitary-adrenocortical response to acute restraint stress.
    Gadek-Michalska A; Bugajski J
    J Physiol Pharmacol; 2003 Sep; 54(3):449-59. PubMed ID: 14566082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of ACTH and corticosterone sampling methods in rats.
    Vahl TP; Ulrich-Lai YM; Ostrander MM; Dolgas CM; Elfers EE; Seeley RJ; D'Alessio DA; Herman JP
    Am J Physiol Endocrinol Metab; 2005 Nov; 289(5):E823-8. PubMed ID: 15956051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of acute and chronic restraint stress on visceral sensitivity and neuroendocrine hormones in rats.
    Sun Y; Liu FL; Song GQ; Qian W; Hou XH
    Chin J Dig Dis; 2006; 7(3):149-55. PubMed ID: 16808795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A single exposure to immobilization causes long-lasting pituitary-adrenal and behavioral sensitization to mild stressors.
    Belda X; Fuentes S; Nadal R; Armario A
    Horm Behav; 2008 Nov; 54(5):654-61. PubMed ID: 18675818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of hypothalamic inputs in maintaining pituitary-adrenal responsiveness in repeated restraint.
    Zelena D; Mergl Z; Foldes A; Kovács KJ; Tóth Z; Makara GB
    Am J Physiol Endocrinol Metab; 2003 Nov; 285(5):E1110-7. PubMed ID: 14534078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Habituation to repeated restraint stress is associated with lack of stress-induced c-fos expression in primary sensory processing areas of the rat brain.
    Girotti M; Pace TW; Gaylord RI; Rubin BA; Herman JP; Spencer RL
    Neuroscience; 2006; 138(4):1067-81. PubMed ID: 16431027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased glucocorticoid response to a novel stress in rats that have been restrained.
    Harris RB; Gu H; Mitchell TD; Endale L; Russo M; Ryan DH
    Physiol Behav; 2004 Jun; 81(4):557-68. PubMed ID: 15178148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of repeated restraint stress on hypothalamo-pituitary-adrenocortical function in vasopressin deficient Brattleboro rats.
    Zelena D; Földes A; Mergl Z; Barna I; Kovács KJ; Makara GB
    Brain Res Bull; 2004 Jul; 63(6):521-30. PubMed ID: 15249118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exposure to chronic stress increases the locomotor response to cocaine and the basal levels of corticosterone in adolescent rats.
    Lepsch LB; Gonzalo LA; Magro FJ; Delucia R; Scavone C; Planeta CS
    Addict Biol; 2005 Sep; 10(3):251-6. PubMed ID: 16109586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of vasopressin 1b receptor blockade on the hypothalamic-pituitary-adrenal response of chronically stressed rats to a heterotypic stressor.
    Spiga F; Harrison LR; MacSweeney CP; Thomson FJ; Craighead M; Lightman SL
    J Endocrinol; 2009 Mar; 200(3):285-91. PubMed ID: 19074473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses of the HPA axis after chronic variable stress: effects of novel and familiar stressors.
    Simpkiss JL; Devine DP
    Neuro Endocrinol Lett; 2003; 24(1-2):97-103. PubMed ID: 12743542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation in the corticosterone and hyperthermic responses to stress following repeated stressor exposure.
    Barnum CJ; Blandino P; Deak T
    J Neuroendocrinol; 2007 Aug; 19(8):632-42. PubMed ID: 17620105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Adaptation to weightlessness and stress].
    Grigor'ev AI; Kaplanskiĭ AS; Durnova GN
    Aviakosm Ekolog Med; 1996; 30(3):4-8. PubMed ID: 8963293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mild, short-term stress alters dendritic morphology in rat medial prefrontal cortex.
    Brown SM; Henning S; Wellman CL
    Cereb Cortex; 2005 Nov; 15(11):1714-22. PubMed ID: 15703248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of various stressors on the blood ACTH and corticosterone concentration in normotensive Wistar and spontaneously hypertensive Wistar-Kyoto rats.
    Djordjevic J; Vuckovic T; Jasnic N; Cvijic G
    Gen Comp Endocrinol; 2007; 153(1-3):217-20. PubMed ID: 17383653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic stress alters dendritic morphology in rat medial prefrontal cortex.
    Cook SC; Wellman CL
    J Neurobiol; 2004 Aug; 60(2):236-48. PubMed ID: 15266654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imidazoline2 (I2) receptor- and alpha2-adrenoceptor-mediated modulation of hypothalamic-pituitary-adrenal axis activity in control and acute restraint stressed rats.
    Finn DP; Hudson AL; Kinoshita H; Coventry TL; Jessop DS; Nutt DJ; Harbuz MS
    J Psychopharmacol; 2004 Mar; 18(1):47-53. PubMed ID: 15107184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effects of repeated restraint stress on pulsatile lutenizing hormone secretion in female Fischer, Lewis and Wistar rats.
    Li XF; Edward J; Mitchell JC; Shao B; Bowes JE; Coen CW; Lightman SL; O'Byrne KT
    J Neuroendocrinol; 2004 Jul; 16(7):620-7. PubMed ID: 15214865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Androgen inhibits, while oestrogen enhances, restraint-induced activation of neuropeptide neurones in the paraventricular nucleus of the hypothalamus.
    Lund TD; Munson DJ; Haldy ME; Handa RJ
    J Neuroendocrinol; 2004 Mar; 16(3):272-8. PubMed ID: 15049858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.