BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 11538333)

  • 21. Antarctic climate cooling and terrestrial ecosystem response.
    Doran PT; Priscu JC; Lyons WB; Walsh JE; Fountain AG; McKnight DM; Moorhead DL; Virginia RA; Wall DH; Clow GD; Fritsen CH; McKay CP; Parsons AN
    Nature; 2002 Jan; 415(6871):517-20. PubMed ID: 11793010
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomineralization of endolithic microbes in rocks from the McMurdo Dry Valleys of Antarctica: implications for microbial fossil formation and their detection.
    Wierzchos J; Sancho LG; Ascaso C
    Environ Microbiol; 2005 Apr; 7(4):566-75. PubMed ID: 15816933
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultraviolet radiation-induced limitation to epilithic microbial growth in arid deserts--dosimetric experiments in the hyperarid core of the Atacama Desert.
    Cockell CS; McKay CP; Warren-Rhodes K; Horneck G
    J Photochem Photobiol B; 2008 Feb; 90(2):79-87. PubMed ID: 18191576
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antarctic cryptoendolithic microbial ecosystem research, 1986-1987.
    Friedmann EI; Meyer MA
    Antarct J US; 1987; 22(5):240-1. PubMed ID: 11538330
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermal therapy in urologic systems: a comparison of arrhenius and thermal isoeffective dose models in predicting hyperthermic injury.
    He X; Bhowmick S; Bischof JC
    J Biomech Eng; 2009 Jul; 131(7):074507. PubMed ID: 19640143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert.
    Friedmann EI; Weed R
    Science; 1987 May; 236(4802):703-5. PubMed ID: 11536571
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Climate change decreases habitat suitability for some tick species (Acari: Ixodidae) in South Africa.
    Estrada-Peña A
    Onderstepoort J Vet Res; 2003 Jun; 70(2):79-93. PubMed ID: 12967169
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Incorporation of inorganic carbon by Antarctic cryptoendolithic fungi.
    Palmer RJ; Friedmann EI
    Polarforschung; 1988; 58(2-3):189-91. PubMed ID: 11538354
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbial populations and activities in the rhizoplane of rock-weathering desert plants. I. Root colonization and weathering of igneous rocks.
    Puente ME; Bashan Y; Li CY; Lebsky VK
    Plant Biol (Stuttg); 2004 Sep; 6(5):629-42. PubMed ID: 15375735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The cryptoendolithic microbial environment in the Antarctic cold desert: temperature variations in nature.
    McKay CP; Friedmann EI
    Polar Biol; 1985; 4():19-25. PubMed ID: 11539737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of Holdridge life-zone model based on the terrain factor in Xinjiang Automous Region.
    Ni YM; Ouyang ZY; Wang XK
    J Environ Sci (China); 2005; 17(6):1042-6. PubMed ID: 16465905
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regional climate modulates the canopy mosaic of favourable and risky microclimates for insects.
    Pincebourde S; Sinoquet H; Combes D; Casas J
    J Anim Ecol; 2007 May; 76(3):424-38. PubMed ID: 17439460
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of ultramafic rocks on microbial communities at the Logatchev hydrothermal field, located 15 degrees N on the Mid-Atlantic Ridge.
    Perner M; Kuever J; Seifert R; Pape T; Koschinsky A; Schmidt K; Strauss H; Imhoff JF
    FEMS Microbiol Ecol; 2007 Jul; 61(1):97-109. PubMed ID: 17506828
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [A mathematical model of heat exchange between astronaut and environmental medium on the Lunar surface].
    Wu Q
    Space Med Med Eng (Beijing); 1997 Dec; 10(6):453-6. PubMed ID: 11540446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbial populations and activities in the rhizoplane of rock-weathering desert plants. II. Growth promotion of cactus seedlings.
    Puente ME; Li CY; Bashan Y
    Plant Biol (Stuttg); 2004 Sep; 6(5):643-50. PubMed ID: 15375736
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling the distribution of Schistosoma mansoni and host snails in Uganda using satellite sensor data and Geographical Information Systems.
    Stensgaard A; Jørgensen A; Kabatereine NB; Malone JB; Kristensen TK
    Parassitologia; 2005 Mar; 47(1):115-25. PubMed ID: 16044680
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Celebrating polar science.
    Leshner AI
    Science; 2007 Mar; 315(5818):1465. PubMed ID: 17363632
    [No Abstract]   [Full Text] [Related]  

  • 38. Preliminary report on radiocarbon dating of cryptoendolithic microorganisms.
    Bonani G; Friedmann EI; Ocampo-Friedmann R; McKay CP; Woelfli W
    Polarforschung; 1988; 58(2-3):199-200. PubMed ID: 11538356
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing.
    Doona CJ; Feeherry FE; Ross EW
    Int J Food Microbiol; 2005 Apr; 100(1-3):21-32. PubMed ID: 15854689
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pre-Cambrian roots of novel Antarctic cryptoendolithic bacterial lineages.
    Albanese D; Coleine C; Rota-Stabelli O; Onofri S; Tringe SG; Stajich JE; Selbmann L; Donati C
    Microbiome; 2021 Mar; 9(1):63. PubMed ID: 33741058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.