BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 11538355)

  • 1. Primary production of the cryptoendolithic microbiota from the Antarctic Desert.
    Vestal JR
    Polarforschung; 1988; 58(2-3):193-8. PubMed ID: 11538355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts.
    Palmer RJ; Friedmann EI
    Microb Ecol; 1990; 19():111-8. PubMed ID: 11538696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon metabolism of the cryptoendolithic microbiota from the Antarctic desert.
    Vestal JR
    Appl Environ Microbiol; 1988 Apr; 54(4):960-5. PubMed ID: 11536604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomass of the cryptoendolithic microbiota from the Antarctic desert.
    Vestal JR
    Appl Environ Microbiol; 1988 Apr; 54(4):957-9. PubMed ID: 11536603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cryptoendolithic microbial environment in the Ross Desert of Antarctica: light in the photosynthetically active region.
    Nienow JA; McKay CP; Friedmann EI
    Microb Ecol; 1988; 16():271-89. PubMed ID: 11538334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation of inorganic carbon by Antarctic cryptoendolithic fungi.
    Palmer RJ; Friedmann EI
    Polarforschung; 1988; 58(2-3):189-91. PubMed ID: 11538354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica.
    Friedmann EI; Kappen L; Meyer MA; Nienow JA
    Microb Ecol; 1993; 25(1):51-69. PubMed ID: 11537155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cryptoendolithic microbial environment in the Ross Desert of Antarctica: satellite-transmitted continuous nanoclimate data, 1984 to 1986.
    Friedmann EI; McKay CP; Nienow JA
    Polar Biol; 1987; 7():273-87. PubMed ID: 11539048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antarctic cryptoendolithic microbial ecosystem research, 1986-1987.
    Friedmann EI; Meyer MA
    Antarct J US; 1987; 22(5):240-1. PubMed ID: 11538330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica.
    Friedmann EI; Hua M; Ocampo-Friedmann R
    Polarforschung; 1988; 58(2-3):251-9. PubMed ID: 11538357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preliminary report on radiocarbon dating of cryptoendolithic microorganisms.
    Bonani G; Friedmann EI; Ocampo-Friedmann R; McKay CP; Woelfli W
    Polarforschung; 1988; 58(2-3):199-200. PubMed ID: 11538356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature response of Antarctic cryptoendolithic photosynthetic microorganisms.
    Ocampo-Friedmann R; Meyer MA; Chen M; Friedmann EI
    Polarforschung; 1988; 58(2-3):121-4. PubMed ID: 11538353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photosynthetic microbes in freezing deserts.
    Thomas DN
    Trends Microbiol; 2005 Mar; 13(3):87-8. PubMed ID: 15737723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does iron inhibit cryptoendolithic microbial communities?
    Johnston CG; Vestal JR
    Antarct J US; 1988; 21(5):225-6. PubMed ID: 11538332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward synthesis of relationships among leaf longevity, instantaneous photosynthetic rate, lifetime leaf carbon gain, and the gross primary production of forests.
    Kikuzawa K; Lechowicz MJ
    Am Nat; 2006 Sep; 168(3):373-83. PubMed ID: 16947112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecology: widespread colonization by polar hypoliths.
    Cockell CS; Stokes MD
    Nature; 2004 Sep; 431(7007):414. PubMed ID: 15386002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions of climate, leaf area index and leaf physiology to variation in gross primary production of six coniferous forests across Europe: a model-based analysis.
    Duursma RA; Kolari P; Perämäki M; Pulkkinen M; Mäkelä A; Nikinmaa E; Hari P; Aurela M; Berbigier P; Bernhofer CH; Grünwald T; Loustau D; Mölder M; Verbeeck H; Vesala T
    Tree Physiol; 2009 May; 29(5):621-39. PubMed ID: 19324698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A complete energy balance from photons to new biomass reveals a light- and nutrient-dependent variability in the metabolic costs of carbon assimilation.
    Jakob T; Wagner H; Stehfest K; Wilhelm C
    J Exp Bot; 2007; 58(8):2101-12. PubMed ID: 17483116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Future carbon balance of China's forests under climate change and increasing CO2.
    Ju WM; Chen JM; Harvey D; Wang S
    J Environ Manage; 2007 Nov; 85(3):538-62. PubMed ID: 17187919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of Endocarpon pusillum Hedwig carbon budget in the Tengger Desert based on its photosynthetic rate.
    Ding L; Zhou Q; Wei J
    Sci China Life Sci; 2013 Sep; 56(9):848-55. PubMed ID: 23907293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.