BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 11538355)

  • 21. Flux and turnover of fixed carbon in soil microbial biomass of limed and unlimed plots of an upland grassland ecosystem.
    Rangel-Castro JI; Prosser JI; Ostle N; Scrimgeour CM; Killham K; Meharg AA
    Environ Microbiol; 2005 Apr; 7(4):544-52. PubMed ID: 15816931
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Benthic primary production during emersion: In situ measurements and potential primary production in the Seine Estuary (English Channel, France).
    Spilmont N; Davoult D; Migné A
    Mar Pollut Bull; 2006; 53(1-4):49-55. PubMed ID: 16297939
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Spectral properties of the green alga Trebouxia--a phycobiont of cryptoendolithic lichens in the high-latitude polar regions of Antarctica].
    Erokhina LG; Shatilovich AV; Kaminskaia OP; Gilichinskiĭ DA
    Mikrobiologiia; 2004; 73(4):498-503. PubMed ID: 15521176
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photosynthetic carbon incorporation and turnover in antarctic cryptoendolithic microbial communities: are they the slowest-growing communities on Earth?
    Johnston CG; Vestal JR
    Appl Environ Microbiol; 1991 Aug; 57(8):2308-11. PubMed ID: 16348539
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The cryptoendolithic microbial environment in the Ross Desert of Antarctica: mathematical models of the thermal regime.
    Nienow JA; McKay CP; Friedmann EI
    Microb Ecol; 1988; 16():253-70. PubMed ID: 11538333
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Variability in carbon uptake and (re)cycling in Antarctic cryptoendolithic microbial ecosystems demonstrated through radiocarbon analysis of organic biomarkers.
    Brady AL; Goordial J; Sun HJ; Whyte LG; Slater GF
    Geobiology; 2018 Jan; 16(1):62-79. PubMed ID: 29076278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of primary production in Lake Erie by multiple proxies.
    Ostrom NE; Carrick HJ; Twiss MR; Piwinski L
    Oecologia; 2005 Jun; 144(1):115-24. PubMed ID: 15887002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strategies of survival and resource exploitation in the Antarctic fellfield ecosystem.
    Block W; Lewis Smith RI; Kennedy AD
    Biol Rev Camb Philos Soc; 2009 Aug; 84(3):449-84. PubMed ID: 19659886
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Winter forest soil respiration controlled by climate and microbial community composition.
    Monson RK; Lipson DL; Burns SP; Turnipseed AA; Delany AC; Williams MW; Schmidt SK
    Nature; 2006 Feb; 439(7077):711-4. PubMed ID: 16467835
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Climate-driven trends in contemporary ocean productivity.
    Behrenfeld MJ; O'Malley RT; Siegel DA; McClain CR; Sarmiento JL; Feldman GC; Milligan AJ; Falkowski PG; Letelier RM; Boss ES
    Nature; 2006 Dec; 444(7120):752-5. PubMed ID: 17151666
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cryptococcus friedmannii, a new species of yeast from the Antarctic.
    Vishniac HS
    Mycologia; 1985; 77(1):149-53. PubMed ID: 11540828
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Life form and water source interact to determine active time and environment in cryptogams: an example from the maritime Antarctic.
    Schlensog M; Green TG; Schroeter B
    Oecologia; 2013 Sep; 173(1):59-72. PubMed ID: 23440504
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contrasting plant physiological adaptation to climate in the native and introduced range of Hypericum perforatum.
    Maron JL; Elmendorf SC; Vilà M
    Evolution; 2007 Aug; 61(8):1912-24. PubMed ID: 17683433
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Viral-mediated lysis of microbes and carbon release in the sub-Antarctic and Polar Frontal zones of the Australian Southern Ocean.
    Evans C; Pearce I; Brussaard CP
    Environ Microbiol; 2009 Nov; 11(11):2924-34. PubMed ID: 19758350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The cryptoendolithic microbial environment in the Antarctic cold desert: temperature variations in nature.
    McKay CP; Friedmann EI
    Polar Biol; 1985; 4():19-25. PubMed ID: 11539737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation.
    Austin AT; Vivanco L
    Nature; 2006 Aug; 442(7102):555-8. PubMed ID: 16885982
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Water relations, thallus structure and photosynthesis in Negev Desert lichens.
    Palmer RJ; Friedmann EI
    New Phytol; 1990; 116():597-603. PubMed ID: 11536941
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extreme responses to climate change in Antarctic lakes.
    Quayle WC; Peck LS; Peat H; Ellis-Evans JC; Harrigan PR
    Science; 2002 Jan; 295(5555):645. PubMed ID: 11809962
    [No Abstract]   [Full Text] [Related]  

  • 39. Antarctic climate cooling and terrestrial ecosystem response.
    Doran PT; Priscu JC; Lyons WB; Walsh JE; Fountain AG; McKnight DM; Moorhead DL; Virginia RA; Wall DH; Clow GD; Fritsen CH; McKay CP; Parsons AN
    Nature; 2002 Jan; 415(6871):517-20. PubMed ID: 11793010
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spectral niche complementarity and carbon dynamics in pelagic ecosystems.
    Striebel M; Behl S; Diehl S; Stibor H
    Am Nat; 2009 Jul; 174(1):141-7. PubMed ID: 19456261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.