These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 11538358)

  • 41. Ultrastructural and geochemical characterization of Archean-Paleoproterozoic graphite particles: implications for recognizing traces of life in highly metamorphosed rocks.
    Schiffbauer JD; Yin L; Bodnar RJ; Kaufman AJ; Meng F; Hu J; Shen B; Yuan X; Bao H; Xiao S
    Astrobiology; 2007 Aug; 7(4):684-704. PubMed ID: 17723098
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evidence in pre-2.2 Ga paleosols for the early evolution of atmospheric oxygen and terrestrial biota: comment and reply.
    Holland HD; Rye R
    Geology; 1997 Sep; 25(9):857-8. PubMed ID: 11540482
    [No Abstract]   [Full Text] [Related]  

  • 43. Evaluation of early Archean volcaniclastic and volcanic flow rocks as possible sites for carbonaceous fossil microbes.
    Walsh MM
    Astrobiology; 2004; 4(4):429-37. PubMed ID: 15684724
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Extinctions of life.
    Sepkoski JJ
    Los Alamos Sci; 1988; 16():36-49. PubMed ID: 11540905
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Integrated chronostratigraphy of Proterozoic-Cambrian boundary beds in the western Anabar region, northern Siberia.
    Kaufman AJ; Knoll AH; Semikhatov MA; Grotzinger JP; Jacobsen SB; Adams W
    Geol Mag; 1996; 133(5):509-33. PubMed ID: 11541221
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chronology of early Archaean granite-greenstone evolution in the Barberton Mountain Land, South Africa, based on precise dating by single zircon evaporation.
    Krüner A; Byerly GR; Lowe DR
    Earth Planet Sci Lett; 1991 Apr; 103(1-4):41-54. PubMed ID: 11538384
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Raman imagery: a new approach to assess the geochemical maturity and biogenicity of permineralized precambrian fossils.
    Schopf JW; Kudryavtsev AB; Agresti DG; Czaja AD; Wdowiak TJ
    Astrobiology; 2005 Jun; 5(3):333-71. PubMed ID: 15941380
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Discovery of a new chert-permineralized microbiota in the Proterozoic Buxa Formation of the Ranjit window, Sikkim, northeast India, and its astrobiological implications.
    Schopf JW; Tewari VC; Kudryavtsev AB
    Astrobiology; 2008 Aug; 8(4):735-46. PubMed ID: 18844456
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The combined application of organic sulphur and isotope geochemistry to assess multiple sources of palaeobiochemicals with identical carbon skeletons.
    Kohnen ME; Schouten S; Sinninghe Damsté JS; de Leeuw JW; Merrit D; Hayes JM
    Org Geochem; 1992 Dec; 19(4-6):403-19. PubMed ID: 11538056
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structures of biogenic origin from Early Precambrian rocks of Euro-Asia.
    Lopuchin AS
    Orig Life; 1975; 6(1-2):45-57. PubMed ID: 807898
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mesoproterozoic Archaeoellipsoides: akinetes of heterocystous cyanobacteria.
    Golubic S; Sergeev VN; Knoll AH
    Lethaia; 1995; 28():285-98. PubMed ID: 11539549
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Early animal evolution: emerging views from comparative biology and geology.
    Knoll AH; Carroll SB
    Science; 1999 Jun; 284(5423):2129-37. PubMed ID: 10381872
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Association of orogenic activity with the Ordovician radiation of marine life.
    Miller AI; Mao S
    Geology; 1995 Apr; 23(4):305-8. PubMed ID: 11539503
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microfossils from the Neoarchean Campbell Group, Griqualand West Sequence of the Transvaal Supergroup, and their paleoenvironmental and evolutionary implications.
    Altermann W; Schopf JW
    Precambrian Res; 1995 Nov; 75(1-2):65-90. PubMed ID: 11542814
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Patterns of generic extinction in the fossil record.
    Raup DM; Boyajian GE
    Paleobiology; 1988; 14(2):109-25. PubMed ID: 11542145
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Large-body impact and extinction in the Phanerozoic.
    Raup DM
    Paleobiology; 1992; 18(1):80-8. PubMed ID: 11537745
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Understanding the application of Raman spectroscopy to the detection of traces of life.
    Marshall CP; Edwards HG; Jehlicka J
    Astrobiology; 2010 Mar; 10(2):229-43. PubMed ID: 20402584
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thermally altered Silurian cyanobacterial mats: a key to Earth's oldest fossils.
    Kazmierczak J; Kremer B
    Astrobiology; 2009 Oct; 9(8):731-43. PubMed ID: 19845445
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A 6,000-year sedimentary molecular record of chemocline excursions in the Black Sea.
    Sinninghe Damsté JS; Wakeham SG; Kohnen ME; Hayes JM; de Leeuw JW
    Nature; 1993 Apr; 362(6423):827-9. PubMed ID: 11536532
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rate of production, dissolution and accumulation of biogenic solids in the ocean.
    Arrhenius G
    Glob Planet Change; 1988; 67():119-46. PubMed ID: 11538321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.