These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 11538480)

  • 1. Carbon dioxide emissions from Deccan volcanism and a K/T boundary greenhouse effect.
    Caldeira K; Rampino MR
    Geophys Res Lett; 1990 Aug; 17(9):1299-302. PubMed ID: 11538480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mid-Cretaceous super plume, carbon dioxide, and global warming.
    Caldeira K; Rampino MR
    Geophys Res Lett; 1991 Jun; 18(6):987-90. PubMed ID: 11539811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the Phanerozoic carbon cycle and climate: constraints from the 87Sr/86Sr isotopic ratio of seawater.
    François LM; Walker JC
    Am J Sci; 1992 Feb; 292(2):81-135. PubMed ID: 11537759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconciling early Deccan Traps CO
    Hernandez Nava A; Black BA; Gibson SA; Bodnar RJ; Renne PR; Vanderkluysen L
    Proc Natl Acad Sci U S A; 2021 Apr; 118(14):. PubMed ID: 33782114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy, volatile production, and climatic effects of the Chicxulub Cretaceous/Tertiary impact.
    Pope KO; Baines KH; Ocampo AC; Ivanov BA
    J Geophys Res; 1997 Sep; 102(E9):21645-64. PubMed ID: 11541145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact winter and the Cretaceous/Tertiary extinctions: results of a Chicxulub asteroid impact model.
    Pope KO; Baines KH; Ocampo AC; Ivanov BA
    Earth Planet Sci Lett; 1994; 128():719-25. PubMed ID: 11539442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple factors in the origin of the Cretaceous/Tertiary boundary: the role of environmental stress and Deccan Trap volcanism.
    Glasby GP; Kunzendorf H
    Geol Rundsch; 1996 Jun; 85(2):191-210. PubMed ID: 11543126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The case for a wet, warm climate on early Mars.
    Pollack JB; Kasting JF; Richardson SM; Poliakoff K
    Icarus; 1987; 71():203-24. PubMed ID: 11539035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seafloor hydrothermal activity and spreading rates: the Eocene carbon dioxide greenhouse revisted.
    Kasting JF; Richardson SM
    Geochim Cosmochim Acta; 1985; 49():2541-4. PubMed ID: 11539654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels.
    Freeman KH; Hayes JM
    Global Biogeochem Cycles; 1992 Jun; 6(2):185-98. PubMed ID: 11537848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Episodic ocean-induced CO2 greenhouse on Mars: implications for fluvial valley formation.
    Gulick VC; Tyler D; McKay CP; Haberle RM
    Icarus; 1997 Nov; 130(1):68-86. PubMed ID: 11541758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term climate change and the geochemical cycle of carbon.
    Marshall HG; Walker JC; Kuhn WR
    J Geophys Res; 1988 Jan; 93(D1):791-801. PubMed ID: 11539746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction.
    Chiarenza AA; Farnsworth A; Mannion PD; Lunt DJ; Valdes PJ; Morgan JV; Allison PA
    Proc Natl Acad Sci U S A; 2020 Jul; 117(29):17084-17093. PubMed ID: 32601204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Return of the coral reef hypothesis: basin to shelf partitioning of CaCO3 and its effect on atmospheric CO2.
    Opdyke BN; Walker JC
    Geology; 1992 Aug; 20(8):733-6. PubMed ID: 11538164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO2 condensation and the climate of early Mars.
    Kasting JF
    Icarus; 1991; 94():1-13. PubMed ID: 11538088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemostratigraphic evidence of Deccan volcanism from the marine osmium isotope record.
    Ravizza G; Peucker-Ehrenbrink B
    Science; 2003 Nov; 302(5649):1392-5. PubMed ID: 14631039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of carbon sinks in a changing climate.
    Fung IY; Doney SC; Lindsay K; John J
    Proc Natl Acad Sci U S A; 2005 Aug; 102(32):11201-6. PubMed ID: 16061800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid model of the CO2 geochemical cycle and its application to large impact events.
    Kasting JF; Richardson SM; Pollack JB; Toon OB
    Am J Sci; 1986 May; 286(5):361-89. PubMed ID: 11542044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abrupt climate change and transient climates during the Paleogene: a marine perspective.
    Zachos JC; Lohmann KC; Walker JC; Wise SW
    J Geol; 1993 Mar; 101(2):191-213. PubMed ID: 11537739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climatic consequences of very high carbon dioxide levels in the earth's early atmosphere.
    Kasting JF; Ackerman TP
    Science; 1986 Dec; 234():1383-5. PubMed ID: 11539665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.