These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 11538511)

  • 1. Effects of microgravity on interstitial muscle receptors affecting heart rate and blood pressure during static exercise.
    Essfeld D; Baum K; Hoffmann U; Stegemann J
    Physiologist; 1993 Feb; 36(1 Suppl):S131-4. PubMed ID: 11538511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of muscle sympathetic nerve activity to static handgrip exercise after 14 days of exposure to simulated microgravity.
    Michikami D; Kamiya A; Fu Q; Cui J; Usui H; Atsuta S; Niimi Y; Iwase S; Mano T
    J Gravit Physiol; 2000 Jul; 7(2):P175-6. PubMed ID: 12697516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Test of exercise experiments proposed for the MIR '92 mission.
    Essfeld D; Baum K; Hoffmann U
    Microgravity Sci Technol; 1991 Jun; 4(1):48-51. PubMed ID: 11541454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of microgravity on interstitial muscle receptors affecting heart rate and blood pressure during static exercise.
    Essfeld D; Baum K; Hoffmann U; Stegemann J
    Clin Investig; 1993 Sep; 71(9):704-9. PubMed ID: 8241720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orthostatic stress by lower body negative pressure and its body fluid distribution kinetics under microgravity.
    Baisch FJ
    Physiologist; 1993 Feb; 36(1 Suppl):S135-8. PubMed ID: 11538512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Body position and volume status as determinants of cardiovascular responses to transition into microgravity in parabolic flight.
    Karemaker JM; Stok WJ; Latham RD
    Physiologist; 1993; 36(1 Suppl):S56-7. PubMed ID: 11537427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Big concepts, small N.
    Pawelczyk JA
    J Physiol; 2006 May; 572(Pt 3):607-8. PubMed ID: 16543263
    [No Abstract]   [Full Text] [Related]  

  • 8. Changes in muscle sympathetic nerve activity and effects of breathing maneuvers in humans during microgravity induced by parabolic flight.
    Iwase S; Jian C; Kitazawa H; Kamiya A; Miyazaki S; Sugiyama Y; Mukai C; Kohno M; Mano T; Nagaoka S
    J Gravit Physiol; 1999 Jul; 6(1):P71-2. PubMed ID: 11543033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weightlessness simulations for cardiovascular and muscle systems: validity of rat models.
    Musacchia XJ; Fagette S
    J Gravit Physiol; 1997 Oct; 4(3):49-59. PubMed ID: 11541869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in extracellular muscle volume affect heart rate and blood pressure responses to static exercise.
    Baum K; Essfeld D; Stegemann J
    Acta Astronaut; 1991; 23():139-47. PubMed ID: 11537116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Space biology and medicine.
    Acta Astronaut; 1979 Oct; 6(10):1235-342. PubMed ID: 11902165
    [No Abstract]   [Full Text] [Related]  

  • 12. Muscle changes with eccentric exercise: implications on Earth and in space.
    Hargens AR; Parazynski S; Aratow M; Friden J
    Adv Myochem; 1989; 2():299-312. PubMed ID: 11540912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal muscle signaling and the heart rate and blood pressure response to exercise: insight from heart rate pacing during exercise with a trained and a deconditioned muscle group.
    Mortensen SP; Svendsen JH; Ersbøll M; Hellsten Y; Secher NH; Saltin B
    Hypertension; 2013 May; 61(5):1126-33. PubMed ID: 23478101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Baroreflex and metaboreflex control of cardiovascular system during exercise in space.
    Pagani M; Pizzinelli P; Beltrami S; Massaro M; Lucini D; Iellamo F
    Respir Physiol Neurobiol; 2009 Oct; 169 Suppl 1():S42-5. PubMed ID: 19446046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone tissue engineering: the role of interstitial fluid flow.
    Hillsley MV; Frangos JA
    Biotechnol Bioeng; 1994 Mar; 43(7):573-81. PubMed ID: 11540959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Changes of leg compliance during weightlessness or simulated weightlessness].
    Liang WB; Jiang SZ; Shen XY
    Space Med Med Eng (Beijing); 2002 Apr; 15(2):140-3. PubMed ID: 12068887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effects of weightlessness on baroreflex function].
    Shen XY
    Space Med Med Eng (Beijing); 2002 Dec; 15(6):465-8. PubMed ID: 12622102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle metaboreflex contribution to cardiovascular regulation during dynamic exercise in microgravity: insights from mission STS-107 of the space shuttle Columbia.
    Iellamo F; Di Rienzo M; Lucini D; Legramante JM; Pizzinelli P; Castiglioni P; Pigozzi F; Pagani M; Parati G
    J Physiol; 2006 May; 572(Pt 3):829-38. PubMed ID: 16469787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiovascular and metabolic responses to 6 degrees head-down (HDT) tilt and 70 degrees head-up (HUT) tilt following exercise.
    Seedhouse EL
    Physiologist; 1993 Feb; 36(1 Suppl):S58-61. PubMed ID: 11538532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of the effects of lower body positive pressure and head-down tilt on cardiovascular responses in humans.
    Fu Q; Sugiyama Y; Kamiya A; Iwase S; Mano T
    J Gravit Physiol; 1999 Jul; 6(1):P111-2. PubMed ID: 11542981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.