BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 11538528)

  • 1. The avian embryo responding to microgravity of space flight.
    Hullinger RL
    Physiologist; 1993 Feb; 36(1 Suppl):S42-5. PubMed ID: 11538528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of microgravity on osteoblast growth.
    Hughes-Fulford M; Tjandrawinata R; Fitzgerald J; Gasuad K; Gilbertson V
    Gravit Space Biol Bull; 1998 May; 11(2):51-60. PubMed ID: 11540639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in gene expression and signal transduction in microgravity.
    Hughes-Fulford M
    J Gravit Physiol; 2001 Jul; 8(1):P1-4. PubMed ID: 12638602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium utilization by quail embryos during activities preceding space flight and during embryogenesis in microgravity aboard the orbital space station MIR.
    Orban JI; Piert SJ; Guryeva TS; Hester PY
    J Gravit Physiol; 1999 Oct; 6(2):33-41. PubMed ID: 11543084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The BIMDA shuttle flight mission: a low cost microgravity payload.
    Holemans J; Cassanto JM; Moller TW; Cassanto VA; Rose A; Luttges M; Morrison D; Todd P; Stewart R; Korszun RZ; Deardorff G
    Microgravity Q; 1991; 1(4):235-47. PubMed ID: 11708362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Characteristics of morphogenesis of the Japanese quail embryos during microgravity].
    Dadasheva OA; Gur'eva TS; Sychev VN; Jehns G
    Aviakosm Ekolog Med; 1998; 32(3):38-41. PubMed ID: 9816435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of anabolic signals and alteration of osteoblast nuclear morphology in microgravity.
    Hughes-Fulford M; Rodenacker K; Jütting U
    J Cell Biochem; 2006 Oct; 99(2):435-49. PubMed ID: 16619267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of exposure to microgravity on the development and structural organisation of plant protoplasts flown on Biokosmos 9.
    Rasmussen O; Klimchuk DA; Kordyum EL; Danevich LA; Tarnavskaya EB; Lozovaya VV; Tairbekov MG; Baggerud C; Iversen TH
    Physiol Plant; 1992 Jan; 84(1):162-70. PubMed ID: 11541143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data.
    Convertino VA
    J Gravit Physiol; 1998 Jul; 5(1):P85-8. PubMed ID: 11542376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primordial germ cells in the embryos of Medaka fish.
    Ijiri K; Narita T; Mizuno R
    Biol Sci Space; 1996 Oct; 10(3):156-7. PubMed ID: 11540341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of REM sleep to Fos and FRA expression in the vestibular nuclei of rat leading to vestibular adaptation during the STS-90 Neurolab Mission.
    Pompeiano O
    Arch Ital Biol; 2007 Jan; 145(1):55-85. PubMed ID: 17274184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Presumed role of the gravity in the establishment of the symmetrization in amphibian embryos. Response provided by the biological experimentation in space].
    Bautz A
    Bull Acad Soc Lorraines Sci; 2002; 41(1-2):58-66. PubMed ID: 14983825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Function of the cytoskeleton in gravisensing during spaceflight.
    Hughes-Fulford M
    Adv Space Res; 2003; 32(8):1585-93. PubMed ID: 15002415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Weightlessness experiments on Biosatellite II.
    Edwards BF
    Life Sci Space Res; 1969; 7():84-92. PubMed ID: 11949691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scanning electron microscope observations of brine shrimp larvae from space shuttle experiments.
    DeBell L; Paulsen A; Spooner B
    Scanning Microsc; 1992; 6(4):1129-35. PubMed ID: 11539112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perspective on the consequences of short- and long-duration space flight on human physiology.
    Holick MF
    Life Support Biosph Sci; 1999; 6(1):19-27. PubMed ID: 11541539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Embryonic development of guppies in weightlessness].
    Cherdantseva EM
    Kosm Biol Aviakosm Med; 1987; 21(5):22-5. PubMed ID: 3695332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Electron microscopy analysis of the structural elements of the vestibular input to nodulus Purkinje's cells in rats exposed to a 9-day space flight].
    Krasnov IB
    Aviakosm Ekolog Med; 2008; 42(4):20-7. PubMed ID: 19140468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertebrate development in the environment of space: models, mechanisms, and use of the medaka.
    Wolgemuth DJ; Herrada G; Kiss S; Cannon T; Forsstrom C; Pranger LA; Weismann WP; Pearce L; Whalon B; Phillips CR
    Gravit Space Biol Bull; 1997 Jun; 10(2):97-109. PubMed ID: 11540126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embryonic development of the freshwater snail Biomphalaria glabrata under microgravity conditions (STS-89 mission).
    Marxen JC; Reelsen O; Becker W
    J Gravit Physiol; 2001 Dec; 8(2):29-36. PubMed ID: 12365448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.